mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-16 04:21:52 +00:00
…tch]: import models from community ran ```bash git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g" git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g" git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g" git checkout master libs/langchain/tests/unit_tests/llms git checkout master libs/langchain/tests/unit_tests/chat_models git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py make format cd libs/langchain; make format cd ../experimental; make format cd ../core; make format ```
205 lines
5.4 KiB
Plaintext
205 lines
5.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Memorize\n",
|
|
"\n",
|
|
"Fine-tuning LLM itself to memorize information using unsupervised learning.\n",
|
|
"\n",
|
|
"This tool requires LLMs that support fine-tuning. Currently, only `langchain.llms import GradientLLM` is supported."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Imports"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"from langchain.agents import AgentExecutor, AgentType, initialize_agent, load_tools\n",
|
|
"from langchain.chains import LLMChain\n",
|
|
"from langchain.memory import ConversationBufferMemory\n",
|
|
"from langchain_community.llms import GradientLLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set the Environment API Key\n",
|
|
"Make sure to get your API key from Gradient AI. You are given $10 in free credits to test and fine-tune different models."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from getpass import getpass\n",
|
|
"\n",
|
|
"if not os.environ.get(\"GRADIENT_ACCESS_TOKEN\", None):\n",
|
|
" # Access token under https://auth.gradient.ai/select-workspace\n",
|
|
" os.environ[\"GRADIENT_ACCESS_TOKEN\"] = getpass(\"gradient.ai access token:\")\n",
|
|
"if not os.environ.get(\"GRADIENT_WORKSPACE_ID\", None):\n",
|
|
" # `ID` listed in `$ gradient workspace list`\n",
|
|
" # also displayed after login at at https://auth.gradient.ai/select-workspace\n",
|
|
" os.environ[\"GRADIENT_WORKSPACE_ID\"] = getpass(\"gradient.ai workspace id:\")\n",
|
|
"if not os.environ.get(\"GRADIENT_MODEL_ADAPTER_ID\", None):\n",
|
|
" # `ID` listed in `$ gradient model list --workspace-id \"$GRADIENT_WORKSPACE_ID\"`\n",
|
|
" os.environ[\"GRADIENT_MODEL_ID\"] = getpass(\"gradient.ai model id:\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Optional: Validate your Environment variables ```GRADIENT_ACCESS_TOKEN``` and ```GRADIENT_WORKSPACE_ID``` to get currently deployed models."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create the `GradientLLM` instance\n",
|
|
"You can specify different parameters such as the model name, max tokens generated, temperature, etc."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = GradientLLM(\n",
|
|
" model_id=os.environ[\"GRADIENT_MODEL_ID\"],\n",
|
|
" # # optional: set new credentials, they default to environment variables\n",
|
|
" # gradient_workspace_id=os.environ[\"GRADIENT_WORKSPACE_ID\"],\n",
|
|
" # gradient_access_token=os.environ[\"GRADIENT_ACCESS_TOKEN\"],\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load tools"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tools = load_tools([\"memorize\"], llm=llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Initiate the Agent"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"agent = initialize_agent(\n",
|
|
" tools,\n",
|
|
" llm,\n",
|
|
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
|
|
" verbose=True,\n",
|
|
" # memory=ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True),\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Run the agent\n",
|
|
"Ask the agent to memorize a piece of text."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
"\u001b[32;1m\u001b[1;3mI should memorize this fact.\n",
|
|
"Action: Memorize\n",
|
|
"Action Input: Zara T\u001b[0m\n",
|
|
"Observation: \u001b[36;1m\u001b[1;3mTrain complete. Loss: 1.6853971333333335\u001b[0m\n",
|
|
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
|
|
"Final Answer: Zara Tubikova set a world\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Zara Tubikova set a world'"
|
|
]
|
|
},
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"agent.run(\n",
|
|
" \"Please remember the fact in detail:\\nWith astonishing dexterity, Zara Tubikova set a world record by solving a 4x4 Rubik's Cube variation blindfolded in under 20 seconds, employing only their feet.\"\n",
|
|
")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.6"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|