mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-30 12:55:25 +00:00
* Add strict mypy rules * Fix mypy violations * Add error codes to all type ignores * Add ruff rule PGH003 * Bump mypy version to 1.15
154 lines
5.8 KiB
Python
154 lines
5.8 KiB
Python
from __future__ import annotations
|
|
|
|
import copy
|
|
import json
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
|
|
class RecursiveJsonSplitter:
|
|
"""Splits JSON data into smaller, structured chunks while preserving hierarchy.
|
|
|
|
This class provides methods to split JSON data into smaller dictionaries or
|
|
JSON-formatted strings based on configurable maximum and minimum chunk sizes.
|
|
It supports nested JSON structures, optionally converts lists into dictionaries
|
|
for better chunking, and allows the creation of document objects for further use.
|
|
|
|
Attributes:
|
|
max_chunk_size (int): The maximum size for each chunk. Defaults to 2000.
|
|
min_chunk_size (int): The minimum size for each chunk, derived from
|
|
`max_chunk_size` if not explicitly provided.
|
|
"""
|
|
|
|
def __init__(
|
|
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
|
|
):
|
|
"""Initialize the chunk size configuration for text processing.
|
|
|
|
This constructor sets up the maximum and minimum chunk sizes, ensuring that
|
|
the `min_chunk_size` defaults to a value slightly smaller than the
|
|
`max_chunk_size` if not explicitly provided.
|
|
|
|
Args:
|
|
max_chunk_size (int): The maximum size for a chunk. Defaults to 2000.
|
|
min_chunk_size (Optional[int]): The minimum size for a chunk. If None,
|
|
defaults to the maximum chunk size minus 200, with a lower bound of 50.
|
|
|
|
Attributes:
|
|
max_chunk_size (int): The configured maximum size for each chunk.
|
|
min_chunk_size (int): The configured minimum size for each chunk, derived
|
|
from `max_chunk_size` if not explicitly provided.
|
|
"""
|
|
super().__init__()
|
|
self.max_chunk_size = max_chunk_size
|
|
self.min_chunk_size = (
|
|
min_chunk_size
|
|
if min_chunk_size is not None
|
|
else max(max_chunk_size - 200, 50)
|
|
)
|
|
|
|
@staticmethod
|
|
def _json_size(data: dict[str, Any]) -> int:
|
|
"""Calculate the size of the serialized JSON object."""
|
|
return len(json.dumps(data))
|
|
|
|
@staticmethod
|
|
def _set_nested_dict(d: dict[str, Any], path: list[str], value: Any) -> None:
|
|
"""Set a value in a nested dictionary based on the given path."""
|
|
for key in path[:-1]:
|
|
d = d.setdefault(key, {})
|
|
d[path[-1]] = value
|
|
|
|
def _list_to_dict_preprocessing(self, data: Any) -> Any:
|
|
if isinstance(data, dict):
|
|
# Process each key-value pair in the dictionary
|
|
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
|
|
elif isinstance(data, list):
|
|
# Convert the list to a dictionary with index-based keys
|
|
return {
|
|
str(i): self._list_to_dict_preprocessing(item)
|
|
for i, item in enumerate(data)
|
|
}
|
|
else:
|
|
# Base case: the item is neither a dict nor a list, so return it unchanged
|
|
return data
|
|
|
|
def _json_split(
|
|
self,
|
|
data: dict[str, Any],
|
|
current_path: Optional[list[str]] = None,
|
|
chunks: Optional[list[dict[str, Any]]] = None,
|
|
) -> list[dict[str, Any]]:
|
|
"""Split json into maximum size dictionaries while preserving structure."""
|
|
current_path = current_path or []
|
|
chunks = chunks if chunks is not None else [{}]
|
|
if isinstance(data, dict):
|
|
for key, value in data.items():
|
|
new_path = current_path + [key]
|
|
chunk_size = self._json_size(chunks[-1])
|
|
size = self._json_size({key: value})
|
|
remaining = self.max_chunk_size - chunk_size
|
|
|
|
if size < remaining:
|
|
# Add item to current chunk
|
|
self._set_nested_dict(chunks[-1], new_path, value)
|
|
else:
|
|
if chunk_size >= self.min_chunk_size:
|
|
# Chunk is big enough, start a new chunk
|
|
chunks.append({})
|
|
|
|
# Iterate
|
|
self._json_split(value, new_path, chunks)
|
|
else:
|
|
# handle single item
|
|
self._set_nested_dict(chunks[-1], current_path, data)
|
|
return chunks
|
|
|
|
def split_json(
|
|
self,
|
|
json_data: dict[str, Any],
|
|
convert_lists: bool = False,
|
|
) -> list[dict[str, Any]]:
|
|
"""Splits JSON into a list of JSON chunks."""
|
|
if convert_lists:
|
|
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
|
|
else:
|
|
chunks = self._json_split(json_data)
|
|
|
|
# Remove the last chunk if it's empty
|
|
if not chunks[-1]:
|
|
chunks.pop()
|
|
return chunks
|
|
|
|
def split_text(
|
|
self,
|
|
json_data: Dict[str, Any],
|
|
convert_lists: bool = False,
|
|
ensure_ascii: bool = True,
|
|
) -> List[str]:
|
|
"""Splits JSON into a list of JSON formatted strings."""
|
|
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
|
|
|
|
# Convert to string
|
|
return [json.dumps(chunk, ensure_ascii=ensure_ascii) for chunk in chunks]
|
|
|
|
def create_documents(
|
|
self,
|
|
texts: list[dict[str, Any]],
|
|
convert_lists: bool = False,
|
|
ensure_ascii: bool = True,
|
|
metadatas: Optional[list[dict[Any, Any]]] = None,
|
|
) -> list[Document]:
|
|
"""Create documents from a list of json objects (Dict)."""
|
|
_metadatas = metadatas or [{}] * len(texts)
|
|
documents = []
|
|
for i, text in enumerate(texts):
|
|
for chunk in self.split_text(
|
|
json_data=text, convert_lists=convert_lists, ensure_ascii=ensure_ascii
|
|
):
|
|
metadata = copy.deepcopy(_metadatas[i])
|
|
new_doc = Document(page_content=chunk, metadata=metadata)
|
|
documents.append(new_doc)
|
|
return documents
|