mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-07 08:08:20 +00:00
Using `pyupgrade` to get all `partners` code up to 3.9 standards (mostly, fixing old `typing` imports).
377 lines
13 KiB
Python
377 lines
13 KiB
Python
"""DeepSeek chat models."""
|
|
|
|
from collections.abc import Iterator
|
|
from json import JSONDecodeError
|
|
from typing import Any, Literal, Optional, TypeVar, Union
|
|
|
|
import openai
|
|
from langchain_core.callbacks import (
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.messages import AIMessageChunk, BaseMessage
|
|
from langchain_core.outputs import ChatGenerationChunk, ChatResult
|
|
from langchain_core.runnables import Runnable
|
|
from langchain_core.utils import from_env, secret_from_env
|
|
from langchain_openai.chat_models.base import BaseChatOpenAI
|
|
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
|
|
from typing_extensions import Self
|
|
|
|
DEFAULT_API_BASE = "https://api.deepseek.com/v1"
|
|
|
|
_BM = TypeVar("_BM", bound=BaseModel)
|
|
_DictOrPydanticClass = Union[dict[str, Any], type[_BM], type]
|
|
_DictOrPydantic = Union[dict, _BM]
|
|
|
|
|
|
class ChatDeepSeek(BaseChatOpenAI):
|
|
"""DeepSeek chat model integration to access models hosted in DeepSeek's API.
|
|
|
|
Setup:
|
|
Install ``langchain-deepseek`` and set environment variable ``DEEPSEEK_API_KEY``.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-deepseek
|
|
export DEEPSEEK_API_KEY="your-api-key"
|
|
|
|
Key init args — completion params:
|
|
model: str
|
|
Name of DeepSeek model to use, e.g. "deepseek-chat".
|
|
temperature: float
|
|
Sampling temperature.
|
|
max_tokens: Optional[int]
|
|
Max number of tokens to generate.
|
|
|
|
Key init args — client params:
|
|
timeout: Optional[float]
|
|
Timeout for requests.
|
|
max_retries: int
|
|
Max number of retries.
|
|
api_key: Optional[str]
|
|
DeepSeek API key. If not passed in will be read from env var DEEPSEEK_API_KEY.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_deepseek import ChatDeepSeek
|
|
|
|
llm = ChatDeepSeek(
|
|
model="...",
|
|
temperature=0,
|
|
max_tokens=None,
|
|
timeout=None,
|
|
max_retries=2,
|
|
# api_key="...",
|
|
# other params...
|
|
)
|
|
|
|
Invoke:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
("system", "You are a helpful translator. Translate the user sentence to French."),
|
|
("human", "I love programming."),
|
|
]
|
|
llm.invoke(messages)
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for chunk in llm.stream(messages):
|
|
print(chunk.text(), end="")
|
|
|
|
.. code-block:: python
|
|
|
|
stream = llm.stream(messages)
|
|
full = next(stream)
|
|
for chunk in stream:
|
|
full += chunk
|
|
full
|
|
|
|
Async:
|
|
.. code-block:: python
|
|
|
|
await llm.ainvoke(messages)
|
|
|
|
# stream:
|
|
# async for chunk in (await llm.astream(messages))
|
|
|
|
# batch:
|
|
# await llm.abatch([messages])
|
|
|
|
Tool calling:
|
|
.. code-block:: python
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
class GetWeather(BaseModel):
|
|
'''Get the current weather in a given location'''
|
|
|
|
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
|
|
|
class GetPopulation(BaseModel):
|
|
'''Get the current population in a given location'''
|
|
|
|
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
|
|
|
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
|
|
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
|
|
ai_msg.tool_calls
|
|
|
|
See ``ChatDeepSeek.bind_tools()`` method for more.
|
|
|
|
Structured output:
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
class Joke(BaseModel):
|
|
'''Joke to tell user.'''
|
|
|
|
setup: str = Field(description="The setup of the joke")
|
|
punchline: str = Field(description="The punchline to the joke")
|
|
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
|
|
|
structured_llm = llm.with_structured_output(Joke)
|
|
structured_llm.invoke("Tell me a joke about cats")
|
|
|
|
See ``ChatDeepSeek.with_structured_output()`` for more.
|
|
|
|
Token usage:
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.usage_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.response_metadata
|
|
|
|
""" # noqa: E501
|
|
|
|
model_name: str = Field(alias="model")
|
|
"""The name of the model"""
|
|
api_key: Optional[SecretStr] = Field(
|
|
default_factory=secret_from_env("DEEPSEEK_API_KEY", default=None)
|
|
)
|
|
"""DeepSeek API key"""
|
|
api_base: str = Field(
|
|
default_factory=from_env("DEEPSEEK_API_BASE", default=DEFAULT_API_BASE)
|
|
)
|
|
"""DeepSeek API base URL"""
|
|
|
|
model_config = ConfigDict(populate_by_name=True)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "chat-deepseek"
|
|
|
|
@property
|
|
def lc_secrets(self) -> dict[str, str]:
|
|
"""A map of constructor argument names to secret ids."""
|
|
return {"api_key": "DEEPSEEK_API_KEY"}
|
|
|
|
@model_validator(mode="after")
|
|
def validate_environment(self) -> Self:
|
|
if self.api_base == DEFAULT_API_BASE and not (
|
|
self.api_key and self.api_key.get_secret_value()
|
|
):
|
|
raise ValueError("If using default api base, DEEPSEEK_API_KEY must be set.")
|
|
client_params: dict = {
|
|
k: v
|
|
for k, v in {
|
|
"api_key": self.api_key.get_secret_value() if self.api_key else None,
|
|
"base_url": self.api_base,
|
|
"timeout": self.request_timeout,
|
|
"max_retries": self.max_retries,
|
|
"default_headers": self.default_headers,
|
|
"default_query": self.default_query,
|
|
}.items()
|
|
if v is not None
|
|
}
|
|
|
|
if not (self.client or None):
|
|
sync_specific: dict = {"http_client": self.http_client}
|
|
self.root_client = openai.OpenAI(**client_params, **sync_specific)
|
|
self.client = self.root_client.chat.completions
|
|
if not (self.async_client or None):
|
|
async_specific: dict = {"http_client": self.http_async_client}
|
|
self.root_async_client = openai.AsyncOpenAI(
|
|
**client_params,
|
|
**async_specific,
|
|
)
|
|
self.async_client = self.root_async_client.chat.completions
|
|
return self
|
|
|
|
def _create_chat_result(
|
|
self,
|
|
response: Union[dict, openai.BaseModel],
|
|
generation_info: Optional[dict] = None,
|
|
) -> ChatResult:
|
|
rtn = super()._create_chat_result(response, generation_info)
|
|
|
|
if not isinstance(response, openai.BaseModel):
|
|
return rtn
|
|
|
|
if hasattr(response.choices[0].message, "reasoning_content"): # type: ignore
|
|
rtn.generations[0].message.additional_kwargs["reasoning_content"] = (
|
|
response.choices[0].message.reasoning_content # type: ignore
|
|
)
|
|
# Handle use via OpenRouter
|
|
elif hasattr(response.choices[0].message, "model_extra"): # type: ignore
|
|
model_extra = response.choices[0].message.model_extra # type: ignore
|
|
if isinstance(model_extra, dict) and (
|
|
reasoning := model_extra.get("reasoning")
|
|
):
|
|
rtn.generations[0].message.additional_kwargs["reasoning_content"] = (
|
|
reasoning
|
|
)
|
|
|
|
return rtn
|
|
|
|
def _convert_chunk_to_generation_chunk(
|
|
self,
|
|
chunk: dict,
|
|
default_chunk_class: type,
|
|
base_generation_info: Optional[dict],
|
|
) -> Optional[ChatGenerationChunk]:
|
|
generation_chunk = super()._convert_chunk_to_generation_chunk(
|
|
chunk,
|
|
default_chunk_class,
|
|
base_generation_info,
|
|
)
|
|
if (choices := chunk.get("choices")) and generation_chunk:
|
|
top = choices[0]
|
|
if isinstance(generation_chunk.message, AIMessageChunk):
|
|
if reasoning_content := top.get("delta", {}).get("reasoning_content"):
|
|
generation_chunk.message.additional_kwargs["reasoning_content"] = (
|
|
reasoning_content
|
|
)
|
|
# Handle use via OpenRouter
|
|
elif reasoning := top.get("delta", {}).get("reasoning"):
|
|
generation_chunk.message.additional_kwargs["reasoning_content"] = (
|
|
reasoning
|
|
)
|
|
|
|
return generation_chunk
|
|
|
|
def _stream(
|
|
self,
|
|
messages: list[BaseMessage],
|
|
stop: Optional[list[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
try:
|
|
yield from super()._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
except JSONDecodeError as e:
|
|
raise JSONDecodeError(
|
|
"DeepSeek API returned an invalid response. "
|
|
"Please check the API status and try again.",
|
|
e.doc,
|
|
e.pos,
|
|
) from e
|
|
|
|
def _generate(
|
|
self,
|
|
messages: list[BaseMessage],
|
|
stop: Optional[list[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
try:
|
|
return super()._generate(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
except JSONDecodeError as e:
|
|
raise JSONDecodeError(
|
|
"DeepSeek API returned an invalid response. "
|
|
"Please check the API status and try again.",
|
|
e.doc,
|
|
e.pos,
|
|
) from e
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[_DictOrPydanticClass] = None,
|
|
*,
|
|
method: Literal[
|
|
"function_calling", "json_mode", "json_schema"
|
|
] = "function_calling",
|
|
include_raw: bool = False,
|
|
strict: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema:
|
|
The output schema. Can be passed in as:
|
|
|
|
- an OpenAI function/tool schema,
|
|
- a JSON Schema,
|
|
- a TypedDict class (support added in 0.1.20),
|
|
- or a Pydantic class.
|
|
|
|
If ``schema`` is a Pydantic class then the model output will be a
|
|
Pydantic instance of that class, and the model-generated fields will be
|
|
validated by the Pydantic class. Otherwise the model output will be a
|
|
dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
|
|
for more on how to properly specify types and descriptions of
|
|
schema fields when specifying a Pydantic or TypedDict class.
|
|
|
|
method: The method for steering model generation, one of:
|
|
|
|
- "function_calling":
|
|
Uses DeekSeek's `tool-calling features <https://api-docs.deepseek.com/guides/function_calling>`_.
|
|
- "json_mode":
|
|
Uses DeepSeek's `JSON mode feature <https://api-docs.deepseek.com/guides/json_mode>`_.
|
|
|
|
.. versionchanged:: 0.1.3
|
|
|
|
Added support for ``"json_mode"``.
|
|
|
|
include_raw:
|
|
If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
kwargs: Additional keyword args aren't supported.
|
|
|
|
Returns:
|
|
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
|
|
|
|
| If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
|
|
|
|
| If ``include_raw`` is True, then Runnable outputs a dict with keys:
|
|
|
|
- "raw": BaseMessage
|
|
- "parsed": None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
|
|
- "parsing_error": Optional[BaseException]
|
|
|
|
""" # noqa: E501
|
|
# Some applications require that incompatible parameters (e.g., unsupported
|
|
# methods) be handled.
|
|
if method == "json_schema":
|
|
method = "function_calling"
|
|
return super().with_structured_output(
|
|
schema, method=method, include_raw=include_raw, strict=strict, **kwargs
|
|
)
|