langchain/docs/docs/integrations/providers/comet_tracking.ipynb
Eugene Yurtsev 8ed2ba9301
docs: migrate integrations using langchain-cli (#21929)
Migrate integration docs
2024-05-20 18:14:49 +00:00

372 lines
12 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comet\n",
"\n",
">[Comet](https://www.comet.com/) machine learning platform integrates with your existing infrastructure\n",
">and tools so you can manage, visualize, and optimize models—from training runs to production monitoring"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](https://user-images.githubusercontent.com/7529846/230328046-a8b18c51-12e3-4617-9b39-97614a571a2d.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this guide we will demonstrate how to track your Langchain Experiments, Evaluation Metrics, and LLM Sessions with [Comet](https://www.comet.com/site/?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook). \n",
"\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/ecosystem/comet_tracking\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>\n",
"\n",
"**Example Project:** [Comet with LangChain](https://www.comet.com/examples/comet-example-langchain/view/b5ZThK6OFdhKWVSP3fDfRtrNF/panels?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](https://user-images.githubusercontent.com/7529846/230326720-a9711435-9c6f-4edb-a707-94b67271ab25.png)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Install Comet and Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet comet_ml langchain langchain-openai google-search-results spacy textstat pandas\n",
"\n",
"\n",
"!{sys.executable} -m spacy download en_core_web_sm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize Comet and Set your Credentials"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can grab your [Comet API Key here](https://www.comet.com/signup?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook) or click the link after initializing Comet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import comet_ml\n",
"\n",
"comet_ml.init(project_name=\"comet-example-langchain\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set OpenAI and SerpAPI credentials"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will need an [OpenAI API Key](https://platform.openai.com/account/api-keys) and a [SerpAPI API Key](https://serpapi.com/dashboard) to run the following examples"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"...\"\n",
"# os.environ[\"OPENAI_ORGANIZATION\"] = \"...\"\n",
"os.environ[\"SERPAPI_API_KEY\"] = \"...\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scenario 1: Using just an LLM"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.callbacks import CometCallbackHandler\n",
"from langchain_core.callbacks import StdOutCallbackHandler\n",
"from langchain_openai import OpenAI\n",
"\n",
"comet_callback = CometCallbackHandler(\n",
" project_name=\"comet-example-langchain\",\n",
" complexity_metrics=True,\n",
" stream_logs=True,\n",
" tags=[\"llm\"],\n",
" visualizations=[\"dep\"],\n",
")\n",
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
"llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True)\n",
"\n",
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\", \"Tell me a fact\"] * 3)\n",
"print(\"LLM result\", llm_result)\n",
"comet_callback.flush_tracker(llm, finish=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scenario 2: Using an LLM in a Chain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain_community.callbacks import CometCallbackHandler\n",
"from langchain_core.callbacks import StdOutCallbackHandler\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_openai import OpenAI\n",
"\n",
"comet_callback = CometCallbackHandler(\n",
" complexity_metrics=True,\n",
" project_name=\"comet-example-langchain\",\n",
" stream_logs=True,\n",
" tags=[\"synopsis-chain\"],\n",
")\n",
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
"llm = OpenAI(temperature=0.9, callbacks=callbacks)\n",
"\n",
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
"Title: {title}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)\n",
"\n",
"test_prompts = [{\"title\": \"Documentary about Bigfoot in Paris\"}]\n",
"print(synopsis_chain.apply(test_prompts))\n",
"comet_callback.flush_tracker(synopsis_chain, finish=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scenario 3: Using An Agent with Tools "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain_community.callbacks import CometCallbackHandler\n",
"from langchain_core.callbacks import StdOutCallbackHandler\n",
"from langchain_openai import OpenAI\n",
"\n",
"comet_callback = CometCallbackHandler(\n",
" project_name=\"comet-example-langchain\",\n",
" complexity_metrics=True,\n",
" stream_logs=True,\n",
" tags=[\"agent\"],\n",
")\n",
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
"llm = OpenAI(temperature=0.9, callbacks=callbacks)\n",
"\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callbacks=callbacks)\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=\"zero-shot-react-description\",\n",
" callbacks=callbacks,\n",
" verbose=True,\n",
")\n",
"agent.run(\n",
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
")\n",
"comet_callback.flush_tracker(agent, finish=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scenario 4: Using Custom Evaluation Metrics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `CometCallbackManager` also allows you to define and use Custom Evaluation Metrics to assess generated outputs from your model. Let's take a look at how this works. \n",
"\n",
"\n",
"In the snippet below, we will use the [ROUGE](https://huggingface.co/spaces/evaluate-metric/rouge) metric to evaluate the quality of a generated summary of an input prompt. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet rouge-score"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain_community.callbacks import CometCallbackHandler\n",
"from langchain_core.callbacks import StdOutCallbackHandler\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_openai import OpenAI\n",
"from rouge_score import rouge_scorer\n",
"\n",
"\n",
"class Rouge:\n",
" def __init__(self, reference):\n",
" self.reference = reference\n",
" self.scorer = rouge_scorer.RougeScorer([\"rougeLsum\"], use_stemmer=True)\n",
"\n",
" def compute_metric(self, generation, prompt_idx, gen_idx):\n",
" prediction = generation.text\n",
" results = self.scorer.score(target=self.reference, prediction=prediction)\n",
"\n",
" return {\n",
" \"rougeLsum_score\": results[\"rougeLsum\"].fmeasure,\n",
" \"reference\": self.reference,\n",
" }\n",
"\n",
"\n",
"reference = \"\"\"\n",
"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building.\n",
"It was the first structure to reach a height of 300 metres.\n",
"\n",
"It is now taller than the Chrysler Building in New York City by 5.2 metres (17 ft)\n",
"Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France .\n",
"\"\"\"\n",
"rouge_score = Rouge(reference=reference)\n",
"\n",
"template = \"\"\"Given the following article, it is your job to write a summary.\n",
"Article:\n",
"{article}\n",
"Summary: This is the summary for the above article:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"article\"], template=template)\n",
"\n",
"comet_callback = CometCallbackHandler(\n",
" project_name=\"comet-example-langchain\",\n",
" complexity_metrics=False,\n",
" stream_logs=True,\n",
" tags=[\"custom_metrics\"],\n",
" custom_metrics=rouge_score.compute_metric,\n",
")\n",
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
"llm = OpenAI(temperature=0.9)\n",
"\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)\n",
"\n",
"test_prompts = [\n",
" {\n",
" \"article\": \"\"\"\n",
" The tower is 324 metres (1,063 ft) tall, about the same height as\n",
" an 81-storey building, and the tallest structure in Paris. Its base is square,\n",
" measuring 125 metres (410 ft) on each side.\n",
" During its construction, the Eiffel Tower surpassed the\n",
" Washington Monument to become the tallest man-made structure in the world,\n",
" a title it held for 41 years until the Chrysler Building\n",
" in New York City was finished in 1930.\n",
"\n",
" It was the first structure to reach a height of 300 metres.\n",
" Due to the addition of a broadcasting aerial at the top of the tower in 1957,\n",
" it is now taller than the Chrysler Building by 5.2 metres (17 ft).\n",
"\n",
" Excluding transmitters, the Eiffel Tower is the second tallest\n",
" free-standing structure in France after the Millau Viaduct.\n",
" \"\"\"\n",
" }\n",
"]\n",
"print(synopsis_chain.apply(test_prompts, callbacks=callbacks))\n",
"comet_callback.flush_tracker(synopsis_chain, finish=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Callback Tracer\n",
"\n",
"There is another integration with Comet:\n",
"\n",
"See an [example](/docs/integrations/callbacks/comet_tracing).\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.callbacks.tracers.comet import CometTracer"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}