mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-03 17:54:10 +00:00 
			
		
		
		
	- Move the API reference into the vercel build - Update api reference organization and styling
		
			
				
	
	
		
			123 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Dict, List, Tuple
 | 
						|
 | 
						|
from langchain.agents import (
 | 
						|
    AgentExecutor,
 | 
						|
)
 | 
						|
from langchain.agents.format_scratchpad import format_to_openai_functions
 | 
						|
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
 | 
						|
from langchain_community.chat_models import ChatOpenAI
 | 
						|
from langchain_community.embeddings import OpenAIEmbeddings
 | 
						|
from langchain_community.tools.convert_to_openai import format_tool_to_openai_function
 | 
						|
from langchain_community.tools.tavily_search import TavilySearchResults
 | 
						|
from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper
 | 
						|
from langchain_community.vectorstores import FAISS
 | 
						|
from langchain_core.documents import Document
 | 
						|
from langchain_core.messages import AIMessage, HumanMessage
 | 
						|
from langchain_core.prompts import (
 | 
						|
    ChatPromptTemplate,
 | 
						|
    MessagesPlaceholder,
 | 
						|
)
 | 
						|
from langchain_core.pydantic_v1 import BaseModel, Field
 | 
						|
from langchain_core.runnables import Runnable, RunnableLambda, RunnableParallel
 | 
						|
from langchain_core.tools import BaseTool, Tool
 | 
						|
 | 
						|
# Create the tools
 | 
						|
search = TavilySearchAPIWrapper()
 | 
						|
description = """"Useful for when you need to answer questions \
 | 
						|
about current events or about recent information."""
 | 
						|
tavily_tool = TavilySearchResults(api_wrapper=search, description=description)
 | 
						|
 | 
						|
 | 
						|
def fake_func(inp: str) -> str:
 | 
						|
    return "foo"
 | 
						|
 | 
						|
 | 
						|
fake_tools = [
 | 
						|
    Tool(
 | 
						|
        name=f"foo-{i}",
 | 
						|
        func=fake_func,
 | 
						|
        description=("a silly function that gets info " f"about the number {i}"),
 | 
						|
    )
 | 
						|
    for i in range(99)
 | 
						|
]
 | 
						|
ALL_TOOLS: List[BaseTool] = [tavily_tool] + fake_tools
 | 
						|
 | 
						|
# turn tools into documents for indexing
 | 
						|
docs = [
 | 
						|
    Document(page_content=t.description, metadata={"index": i})
 | 
						|
    for i, t in enumerate(ALL_TOOLS)
 | 
						|
]
 | 
						|
 | 
						|
vector_store = FAISS.from_documents(docs, OpenAIEmbeddings())
 | 
						|
 | 
						|
retriever = vector_store.as_retriever()
 | 
						|
 | 
						|
 | 
						|
def get_tools(query: str) -> List[Tool]:
 | 
						|
    docs = retriever.invoke(query)
 | 
						|
    return [ALL_TOOLS[d.metadata["index"]] for d in docs]
 | 
						|
 | 
						|
 | 
						|
assistant_system_message = """You are a helpful assistant. \
 | 
						|
Use tools (only if necessary) to best answer the users questions."""
 | 
						|
assistant_system_message = """You are a helpful assistant. \
 | 
						|
Use tools (only if necessary) to best answer the users questions."""
 | 
						|
prompt = ChatPromptTemplate.from_messages(
 | 
						|
    [
 | 
						|
        ("system", assistant_system_message),
 | 
						|
        MessagesPlaceholder(variable_name="chat_history"),
 | 
						|
        ("user", "{input}"),
 | 
						|
        MessagesPlaceholder(variable_name="agent_scratchpad"),
 | 
						|
    ]
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def llm_with_tools(input: Dict) -> Runnable:
 | 
						|
    return RunnableLambda(lambda x: x["input"]) | ChatOpenAI(temperature=0).bind(
 | 
						|
        functions=input["functions"]
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _format_chat_history(chat_history: List[Tuple[str, str]]):
 | 
						|
    buffer = []
 | 
						|
    for human, ai in chat_history:
 | 
						|
        buffer.append(HumanMessage(content=human))
 | 
						|
        buffer.append(AIMessage(content=ai))
 | 
						|
    return buffer
 | 
						|
 | 
						|
 | 
						|
agent = (
 | 
						|
    RunnableParallel(
 | 
						|
        {
 | 
						|
            "input": lambda x: x["input"],
 | 
						|
            "chat_history": lambda x: _format_chat_history(x["chat_history"]),
 | 
						|
            "agent_scratchpad": lambda x: format_to_openai_functions(
 | 
						|
                x["intermediate_steps"]
 | 
						|
            ),
 | 
						|
            "functions": lambda x: [
 | 
						|
                format_tool_to_openai_function(tool) for tool in get_tools(x["input"])
 | 
						|
            ],
 | 
						|
        }
 | 
						|
    )
 | 
						|
    | {
 | 
						|
        "input": prompt,
 | 
						|
        "functions": lambda x: x["functions"],
 | 
						|
    }
 | 
						|
    | llm_with_tools
 | 
						|
    | OpenAIFunctionsAgentOutputParser()
 | 
						|
)
 | 
						|
 | 
						|
# LLM chain consisting of the LLM and a prompt
 | 
						|
 | 
						|
 | 
						|
class AgentInput(BaseModel):
 | 
						|
    input: str
 | 
						|
    chat_history: List[Tuple[str, str]] = Field(
 | 
						|
        ..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
agent_executor = AgentExecutor(agent=agent, tools=ALL_TOOLS).with_types(
 | 
						|
    input_type=AgentInput
 | 
						|
)
 |