langchain/libs/community/langchain_community/vectorstores/azuresearch.py
Oleksii Pokotylo 98c0b093bb
community[patch]: Extend AzureSearch with maximal_marginal_relevance, from_embeddings (#21065)
**Description:**
- Extend AzureSearch with `maximal_marginal_relevance` (for vector and
hybrid search)
- Add construction `from_embeddings` - if the user has already embedded
the texts
- Add `add_embeddings` 
- Refactor common parts (`_simple_search`, `_results_to_documents`,
`_reorder_results_with_maximal_marginal_relevance`)
- Add `vector_search_dimensions` as a parameter to the constructor to
avoid extra calls to `embed_query` (most of the time the user applies
the same model and knows the dimension)

**Issue:** none
**Dependencies:** none

- [x] **Add tests and docs**: The docstrings have been added to the new
functions, and unified for the existing ones. The example notebook is
great in illustrating the main usage of AzureSearch, adding the new
methods would only dilute the main content.
- [x] **Lint and test**

---------

Co-authored-by: Oleksii Pokotylo <oleksii.pokotylo@pwc.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-22 13:36:06 -07:00

1007 lines
36 KiB
Python

from __future__ import annotations
import base64
import itertools
import json
import logging
import uuid
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Collection,
Dict,
Iterable,
List,
Literal,
Optional,
Tuple,
Type,
Union,
)
import numpy as np
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import get_from_env
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger()
if TYPE_CHECKING:
from azure.search.documents import SearchClient, SearchItemPaged
from azure.search.documents.indexes.models import (
CorsOptions,
ScoringProfile,
SearchField,
SemanticConfiguration,
VectorSearch,
)
# Allow overriding field names for Azure Search
FIELDS_ID = get_from_env(
key="AZURESEARCH_FIELDS_ID", env_key="AZURESEARCH_FIELDS_ID", default="id"
)
FIELDS_CONTENT = get_from_env(
key="AZURESEARCH_FIELDS_CONTENT",
env_key="AZURESEARCH_FIELDS_CONTENT",
default="content",
)
FIELDS_CONTENT_VECTOR = get_from_env(
key="AZURESEARCH_FIELDS_CONTENT_VECTOR",
env_key="AZURESEARCH_FIELDS_CONTENT_VECTOR",
default="content_vector",
)
FIELDS_METADATA = get_from_env(
key="AZURESEARCH_FIELDS_TAG", env_key="AZURESEARCH_FIELDS_TAG", default="metadata"
)
MAX_UPLOAD_BATCH_SIZE = 1000
def _get_search_client(
endpoint: str,
key: str,
index_name: str,
semantic_configuration_name: Optional[str] = None,
fields: Optional[List[SearchField]] = None,
vector_search: Optional[VectorSearch] = None,
semantic_configurations: Optional[
Union[SemanticConfiguration, List[SemanticConfiguration]]
] = None,
scoring_profiles: Optional[List[ScoringProfile]] = None,
default_scoring_profile: Optional[str] = None,
default_fields: Optional[List[SearchField]] = None,
user_agent: Optional[str] = "langchain",
cors_options: Optional[CorsOptions] = None,
) -> SearchClient:
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import ResourceNotFoundError
from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential
from azure.search.documents import SearchClient
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
ExhaustiveKnnAlgorithmConfiguration,
ExhaustiveKnnParameters,
HnswAlgorithmConfiguration,
HnswParameters,
SearchIndex,
SemanticConfiguration,
SemanticField,
SemanticPrioritizedFields,
SemanticSearch,
VectorSearch,
VectorSearchAlgorithmKind,
VectorSearchAlgorithmMetric,
VectorSearchProfile,
)
default_fields = default_fields or []
if key is None:
credential = DefaultAzureCredential()
elif key.upper() == "INTERACTIVE":
credential = InteractiveBrowserCredential()
credential.get_token("https://search.azure.com/.default")
else:
credential = AzureKeyCredential(key)
index_client: SearchIndexClient = SearchIndexClient(
endpoint=endpoint, credential=credential, user_agent=user_agent
)
try:
index_client.get_index(name=index_name)
except ResourceNotFoundError:
# Fields configuration
if fields is not None:
# Check mandatory fields
fields_types = {f.name: f.type for f in fields}
mandatory_fields = {df.name: df.type for df in default_fields}
# Check for missing keys
missing_fields = {
key: mandatory_fields[key]
for key, value in set(mandatory_fields.items())
- set(fields_types.items())
}
if len(missing_fields) > 0:
# Helper for formatting field information for each missing field.
def fmt_err(x: str) -> str:
return (
f"{x} current type: '{fields_types.get(x, 'MISSING')}'. "
f"It has to be '{mandatory_fields.get(x)}' or you can point "
f"to a different '{mandatory_fields.get(x)}' field name by "
f"using the env variable 'AZURESEARCH_FIELDS_{x.upper()}'"
)
error = "\n".join([fmt_err(x) for x in missing_fields])
raise ValueError(
f"You need to specify at least the following fields "
f"{missing_fields} or provide alternative field names in the env "
f"variables.\n\n{error}"
)
else:
fields = default_fields
# Vector search configuration
if vector_search is None:
vector_search = VectorSearch(
algorithms=[
HnswAlgorithmConfiguration(
name="default",
kind=VectorSearchAlgorithmKind.HNSW,
parameters=HnswParameters(
m=4,
ef_construction=400,
ef_search=500,
metric=VectorSearchAlgorithmMetric.COSINE,
),
),
ExhaustiveKnnAlgorithmConfiguration(
name="default_exhaustive_knn",
kind=VectorSearchAlgorithmKind.EXHAUSTIVE_KNN,
parameters=ExhaustiveKnnParameters(
metric=VectorSearchAlgorithmMetric.COSINE
),
),
],
profiles=[
VectorSearchProfile(
name="myHnswProfile",
algorithm_configuration_name="default",
),
VectorSearchProfile(
name="myExhaustiveKnnProfile",
algorithm_configuration_name="default_exhaustive_knn",
),
],
)
# Create the semantic settings with the configuration
if semantic_configurations:
if not isinstance(semantic_configurations, list):
semantic_configurations = [semantic_configurations]
semantic_search = SemanticSearch(
configurations=semantic_configurations,
default_configuration_name=semantic_configuration_name,
)
elif semantic_configuration_name:
# use default semantic configuration
semantic_configuration = SemanticConfiguration(
name=semantic_configuration_name,
prioritized_fields=SemanticPrioritizedFields(
content_fields=[SemanticField(field_name=FIELDS_CONTENT)],
),
)
semantic_search = SemanticSearch(configurations=[semantic_configuration])
else:
# don't use semantic search
semantic_search = None
# Create the search index with the semantic settings and vector search
index = SearchIndex(
name=index_name,
fields=fields,
vector_search=vector_search,
semantic_search=semantic_search,
scoring_profiles=scoring_profiles,
default_scoring_profile=default_scoring_profile,
cors_options=cors_options,
)
index_client.create_index(index)
# Create the search client
return SearchClient(
endpoint=endpoint,
index_name=index_name,
credential=credential,
user_agent=user_agent,
)
class AzureSearch(VectorStore):
"""`Azure Cognitive Search` vector store."""
def __init__(
self,
azure_search_endpoint: str,
azure_search_key: str,
index_name: str,
embedding_function: Union[Callable, Embeddings],
search_type: str = "hybrid",
semantic_configuration_name: Optional[str] = None,
fields: Optional[List[SearchField]] = None,
vector_search: Optional[VectorSearch] = None,
semantic_configurations: Optional[
Union[SemanticConfiguration, List[SemanticConfiguration]]
] = None,
scoring_profiles: Optional[List[ScoringProfile]] = None,
default_scoring_profile: Optional[str] = None,
cors_options: Optional[CorsOptions] = None,
*,
vector_search_dimensions: Optional[int] = None,
**kwargs: Any,
):
from azure.search.documents.indexes.models import (
SearchableField,
SearchField,
SearchFieldDataType,
SimpleField,
)
"""Initialize with necessary components."""
# Initialize base class
self.embedding_function = embedding_function
if isinstance(self.embedding_function, Embeddings):
self.embed_query = self.embedding_function.embed_query
else:
self.embed_query = self.embedding_function
default_fields = [
SimpleField(
name=FIELDS_ID,
type=SearchFieldDataType.String,
key=True,
filterable=True,
),
SearchableField(
name=FIELDS_CONTENT,
type=SearchFieldDataType.String,
),
SearchField(
name=FIELDS_CONTENT_VECTOR,
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=vector_search_dimensions
or len(self.embed_query("Text")),
vector_search_profile_name="myHnswProfile",
),
SearchableField(
name=FIELDS_METADATA,
type=SearchFieldDataType.String,
),
]
user_agent = "langchain"
if "user_agent" in kwargs and kwargs["user_agent"]:
user_agent += " " + kwargs["user_agent"]
self.client = _get_search_client(
azure_search_endpoint,
azure_search_key,
index_name,
semantic_configuration_name=semantic_configuration_name,
fields=fields,
vector_search=vector_search,
semantic_configurations=semantic_configurations,
scoring_profiles=scoring_profiles,
default_scoring_profile=default_scoring_profile,
default_fields=default_fields,
user_agent=user_agent,
cors_options=cors_options,
)
self.search_type = search_type
self.semantic_configuration_name = semantic_configuration_name
self.fields = fields if fields else default_fields
@property
def embeddings(self) -> Optional[Embeddings]:
# TODO: Support embedding object directly
return None
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Add texts data to an existing index."""
keys = kwargs.get("keys")
# batching support if embedding function is an Embeddings object
if isinstance(self.embedding_function, Embeddings):
try:
embeddings = self.embedding_function.embed_documents(texts) # type: ignore[arg-type]
except NotImplementedError:
embeddings = [self.embedding_function.embed_query(x) for x in texts]
else:
embeddings = [self.embedding_function(x) for x in texts]
if len(embeddings) == 0:
logger.debug("Nothing to insert, skipping.")
return []
return self.add_embeddings(zip(texts, embeddings), metadatas, keys=keys)
def add_embeddings(
self,
text_embeddings: Iterable[Tuple[str, List[float]]],
metadatas: Optional[List[dict]] = None,
*,
keys: Optional[List[str]] = None,
) -> List[str]:
"""Add embeddings to an existing index."""
ids = []
# Write data to index
data = []
for i, (text, embedding) in enumerate(text_embeddings):
# Use provided key otherwise use default key
key = keys[i] if keys else str(uuid.uuid4())
# Encoding key for Azure Search valid characters
key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii")
metadata = metadatas[i] if metadatas else {}
# Add data to index
# Additional metadata to fields mapping
doc = {
"@search.action": "upload",
FIELDS_ID: key,
FIELDS_CONTENT: text,
FIELDS_CONTENT_VECTOR: np.array(embedding, dtype=np.float32).tolist(),
FIELDS_METADATA: json.dumps(metadata),
}
if metadata:
additional_fields = {
k: v
for k, v in metadata.items()
if k in [x.name for x in self.fields]
}
doc.update(additional_fields)
data.append(doc)
ids.append(key)
# Upload data in batches
if len(data) == MAX_UPLOAD_BATCH_SIZE:
response = self.client.upload_documents(documents=data)
# Check if all documents were successfully uploaded
if not all(r.succeeded for r in response):
raise Exception(response)
# Reset data
data = []
# Considering case where data is an exact multiple of batch-size entries
if len(data) == 0:
return ids
# Upload data to index
response = self.client.upload_documents(documents=data)
# Check if all documents were successfully uploaded
if all(r.succeeded for r in response):
return ids
else:
raise Exception(response)
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> bool:
"""Delete by vector ID.
Args:
ids: List of ids to delete.
Returns:
bool: True if deletion is successful,
False otherwise.
"""
if ids:
res = self.client.delete_documents([{"id": i} for i in ids])
return len(res) > 0
else:
return False
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
search_type = kwargs.get("search_type", self.search_type)
if search_type == "similarity":
docs = self.vector_search(query, k=k, **kwargs)
elif search_type == "hybrid":
docs = self.hybrid_search(query, k=k, **kwargs)
elif search_type == "semantic_hybrid":
docs = self.semantic_hybrid_search(query, k=k, **kwargs)
else:
raise ValueError(f"search_type of {search_type} not allowed.")
return docs
def similarity_search_with_relevance_scores(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
score_threshold = kwargs.pop("score_threshold", None)
result = self.vector_search_with_score(query, k=k, **kwargs)
return (
result
if score_threshold is None
else [r for r in result if r[1] >= score_threshold]
)
def vector_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
docs_and_scores = self.vector_search_with_score(
query, k=k, filters=kwargs.get("filters", None)
)
return [doc for doc, _ in docs_and_scores]
def vector_search_with_score(
self,
query: str,
k: int = 4,
filters: Optional[str] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query (str): Text to look up documents similar to.
k (int, optional): Number of Documents to return. Defaults to 4.
filters (str, optional): Filtering expression. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of Documents most similar
to the query and score for each
"""
embedding = self.embed_query(query)
results = self._simple_search(embedding, "", k, filters=filters, **kwargs)
return _results_to_documents(results)
def max_marginal_relevance_search_with_score(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
*,
filters: Optional[str] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search and return results that are reordered by MMR.
Args:
query (str): Text to look up documents similar to.
k (int, optional): How many results to give. Defaults to 4.
fetch_k (int, optional): Total results to select k from.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
filters (str, optional): Filtering expression. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of Documents most similar
to the query and score for each
"""
embedding = self.embed_query(query)
results = self._simple_search(embedding, "", fetch_k, filters=filters, **kwargs)
return _reorder_results_with_maximal_marginal_relevance(
results, query_embedding=np.array(embedding), lambda_mult=lambda_mult, k=k
)
def hybrid_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
docs_and_scores = self.hybrid_search_with_score(query, k=k, **kwargs)
return [doc for doc, _ in docs_and_scores]
def hybrid_search_with_score(
self,
query: str,
k: int = 4,
filters: Optional[str] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query with a hybrid query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embed_query(query)
results = self._simple_search(embedding, query, k, filters=filters, **kwargs)
return _results_to_documents(results)
def hybrid_search_with_relevance_scores(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
score_threshold = kwargs.pop("score_threshold", None)
result = self.hybrid_search_with_score(query, k=k, **kwargs)
return (
result
if score_threshold is None
else [r for r in result if r[1] >= score_threshold]
)
def hybrid_max_marginal_relevance_search_with_score(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
*,
filters: Optional[str] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query with a hybrid query
and reorder results by MMR.
Args:
query (str): Text to look up documents similar to.
k (int, optional): Number of Documents to return. Defaults to 4.
fetch_k (int, optional): Total results to select k from.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
filters (str, optional): Filtering expression. Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embed_query(query)
results = self._simple_search(
embedding, query, fetch_k, filters=filters, **kwargs
)
return _reorder_results_with_maximal_marginal_relevance(
results, query_embedding=np.array(embedding), lambda_mult=lambda_mult, k=k
)
def _simple_search(
self,
embedding: List[float],
text_query: str,
k: int,
*,
filters: Optional[str] = None,
**kwargs: Any,
) -> SearchItemPaged[dict]:
"""Perform vector or hybrid search in the Azure search index.
Args:
embedding: A vector embedding to search in the vector space.
text_query: A full-text search query expression;
Use "*" or omit this parameter to perform only vector search.
k: Number of documents to return.
filters: Filtering expression.
Returns:
Search items
"""
from azure.search.documents.models import VectorizedQuery
return self.client.search(
search_text=text_query,
vector_queries=[
VectorizedQuery(
vector=np.array(embedding, dtype=np.float32).tolist(),
k_nearest_neighbors=k,
fields=FIELDS_CONTENT_VECTOR,
)
],
filter=filters,
top=k,
**kwargs,
)
def semantic_hybrid_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
filters: Filtering expression.
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
docs_and_scores = self.semantic_hybrid_search_with_score_and_rerank(
query, k=k, **kwargs
)
return [doc for doc, _, _ in docs_and_scores]
def semantic_hybrid_search_with_score(
self,
query: str,
k: int = 4,
score_type: Literal["score", "reranker_score"] = "score",
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
score_type: Must either be "score" or "reranker_score".
Defaulted to "score".
filters: Filtering expression.
Returns:
List[Tuple[Document, float]]: A list of documents and their
corresponding scores.
"""
score_threshold = kwargs.pop("score_threshold", None)
docs_and_scores = self.semantic_hybrid_search_with_score_and_rerank(
query, k=k, **kwargs
)
if score_type == "score":
return [
(doc, score)
for doc, score, _ in docs_and_scores
if score_threshold is None or score >= score_threshold
]
elif score_type == "reranker_score":
return [
(doc, reranker_score)
for doc, _, reranker_score in docs_and_scores
if score_threshold is None or reranker_score >= score_threshold
]
def semantic_hybrid_search_with_score_and_rerank(
self, query: str, k: int = 4, *, filters: Optional[str] = None, **kwargs: Any
) -> List[Tuple[Document, float, float]]:
"""Return docs most similar to query with a hybrid query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filters: Filtering expression.
Returns:
List of Documents most similar to the query and score for each
"""
from azure.search.documents.models import VectorizedQuery
results = self.client.search(
search_text=query,
vector_queries=[
VectorizedQuery(
vector=np.array(self.embed_query(query), dtype=np.float32).tolist(),
k_nearest_neighbors=k,
fields=FIELDS_CONTENT_VECTOR,
)
],
filter=filters,
query_type="semantic",
semantic_configuration_name=self.semantic_configuration_name,
query_caption="extractive",
query_answer="extractive",
top=k,
**kwargs,
)
# Get Semantic Answers
semantic_answers = results.get_answers() or []
semantic_answers_dict: Dict = {}
for semantic_answer in semantic_answers:
semantic_answers_dict[semantic_answer.key] = {
"text": semantic_answer.text,
"highlights": semantic_answer.highlights,
}
# Convert results to Document objects
docs = [
(
Document(
page_content=result.pop(FIELDS_CONTENT),
metadata={
**(
json.loads(result[FIELDS_METADATA])
if FIELDS_METADATA in result
else {
k: v
for k, v in result.items()
if k != FIELDS_CONTENT_VECTOR
}
),
**{
"captions": {
"text": result.get("@search.captions", [{}])[0].text,
"highlights": result.get("@search.captions", [{}])[
0
].highlights,
}
if result.get("@search.captions")
else {},
"answers": semantic_answers_dict.get(
result.get(FIELDS_ID, ""),
"",
),
},
},
),
float(result["@search.score"]),
float(result["@search.reranker_score"]),
)
for result in results
]
return docs
@classmethod
def from_texts(
cls: Type[AzureSearch],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
azure_search_endpoint: str = "",
azure_search_key: str = "",
index_name: str = "langchain-index",
fields: Optional[List[SearchField]] = None,
**kwargs: Any,
) -> AzureSearch:
# Creating a new Azure Search instance
azure_search = cls(
azure_search_endpoint,
azure_search_key,
index_name,
embedding,
fields=fields,
**kwargs,
)
azure_search.add_texts(texts, metadatas, **kwargs)
return azure_search
@classmethod
async def afrom_embeddings(
cls: Type[AzureSearch],
text_embeddings: Iterable[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
*,
azure_search_endpoint: str = "",
azure_search_key: str = "",
index_name: str = "langchain-index",
fields: Optional[List[SearchField]] = None,
**kwargs: Any,
) -> AzureSearch:
return cls.from_embeddings(
text_embeddings,
embedding,
metadatas=metadatas,
azure_search_endpoint=azure_search_endpoint,
azure_search_key=azure_search_key,
index_name=index_name,
fields=fields,
**kwargs,
)
@classmethod
def from_embeddings(
cls: Type[AzureSearch],
text_embeddings: Iterable[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
*,
azure_search_endpoint: str = "",
azure_search_key: str = "",
index_name: str = "langchain-index",
fields: Optional[List[SearchField]] = None,
**kwargs: Any,
) -> AzureSearch:
# Creating a new Azure Search instance
text_embeddings, first_text_embedding = _peek(text_embeddings)
if first_text_embedding is None:
raise ValueError("Cannot create AzureSearch from empty embeddings.")
vector_search_dimensions = len(first_text_embedding[1])
azure_search = cls(
azure_search_endpoint=azure_search_endpoint,
azure_search_key=azure_search_key,
index_name=index_name,
embedding_function=embedding,
fields=fields,
vector_search_dimensions=vector_search_dimensions,
**kwargs,
)
azure_search.add_embeddings(text_embeddings, metadatas, **kwargs)
return azure_search
def as_retriever(self, **kwargs: Any) -> AzureSearchVectorStoreRetriever: # type: ignore
"""Return AzureSearchVectorStoreRetriever initialized from this VectorStore.
Args:
search_type (Optional[str]): Defines the type of search that
the Retriever should perform.
Can be "similarity" (default), "hybrid", or
"semantic_hybrid".
search_kwargs (Optional[Dict]): Keyword arguments to pass to the
search function. Can include things like:
k: Amount of documents to return (Default: 4)
score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20)
lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
Returns:
AzureSearchVectorStoreRetriever: Retriever class for VectorStore.
"""
tags = kwargs.pop("tags", None) or []
tags.extend(self._get_retriever_tags())
return AzureSearchVectorStoreRetriever(vectorstore=self, **kwargs, tags=tags)
class AzureSearchVectorStoreRetriever(BaseRetriever):
"""Retriever that uses `Azure Cognitive Search`."""
vectorstore: AzureSearch
"""Azure Search instance used to find similar documents."""
search_type: str = "hybrid"
"""Type of search to perform. Options are "similarity", "hybrid",
"semantic_hybrid", "similarity_score_threshold", "hybrid_score_threshold",
or "semantic_hybrid_score_threshold"."""
k: int = 4
"""Number of documents to return."""
allowed_search_types: ClassVar[Collection[str]] = (
"similarity",
"similarity_score_threshold",
"hybrid",
"hybrid_score_threshold",
"semantic_hybrid",
"semantic_hybrid_score_threshold",
)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in cls.allowed_search_types:
raise ValueError(
f"search_type of {search_type} not allowed. Valid values are: "
f"{cls.allowed_search_types}"
)
return values
def _get_relevant_documents(
self,
query: str,
run_manager: CallbackManagerForRetrieverRun,
**kwargs: Any,
) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.vector_search(query, k=self.k, **kwargs)
elif self.search_type == "similarity_score_threshold":
docs = [
doc
for doc, _ in self.vectorstore.similarity_search_with_relevance_scores(
query, k=self.k, **kwargs
)
]
elif self.search_type == "hybrid":
docs = self.vectorstore.hybrid_search(query, k=self.k, **kwargs)
elif self.search_type == "hybrid_score_threshold":
docs = [
doc
for doc, _ in self.vectorstore.hybrid_search_with_relevance_scores(
query, k=self.k, **kwargs
)
]
elif self.search_type == "semantic_hybrid":
docs = self.vectorstore.semantic_hybrid_search(query, k=self.k, **kwargs)
elif self.search_type == "semantic_hybrid_score_threshold":
docs = [
doc
for doc, _ in self.vectorstore.semantic_hybrid_search_with_score(
query, k=self.k, **kwargs
)
]
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
def _results_to_documents(
results: SearchItemPaged[Dict],
) -> List[Tuple[Document, float]]:
docs = [
(
_result_to_document(result),
float(result["@search.score"]),
)
for result in results
]
return docs
def _reorder_results_with_maximal_marginal_relevance(
results: SearchItemPaged[Dict],
query_embedding: np.ndarray,
lambda_mult: float = 0.5,
k: int = 4,
) -> List[Tuple[Document, float]]:
# Convert results to Document objects
docs = [
(
_result_to_document(result),
float(result["@search.score"]),
result[FIELDS_CONTENT_VECTOR],
)
for result in results
]
documents, scores, vectors = map(list, zip(*docs))
# Get the new order of results.
new_ordering = maximal_marginal_relevance(
query_embedding, vectors, k=k, lambda_mult=lambda_mult
)
# Reorder the values and return.
ret: List[Tuple[Document, float]] = []
for x in new_ordering:
# Function can return -1 index
if x == -1:
break
ret.append((documents[x], scores[x])) # type: ignore
return ret
def _result_to_document(result: Dict) -> Document:
return Document(
page_content=result.pop(FIELDS_CONTENT),
metadata=json.loads(result[FIELDS_METADATA])
if FIELDS_METADATA in result
else {
key: value for key, value in result.items() if key != FIELDS_CONTENT_VECTOR
},
)
def _peek(iterable: Iterable, default: Optional[Any] = None) -> Tuple[Iterable, Any]:
try:
iterator = iter(iterable)
value = next(iterator)
iterable = itertools.chain([value], iterator)
return iterable, value
except StopIteration:
return iterable, default