langchain/libs/community/tests/unit_tests/test_cache.py
Eugene Yurtsev f92006de3c
multiple: langchain 0.2 in master (#21191)
0.2rc 

migrations

- [x] Move memory
- [x] Move remaining retrievers
- [x] graph_qa chains
- [x] some dependency from evaluation code potentially on math utils
- [x] Move openapi chain from `langchain.chains.api.openapi` to
`langchain_community.chains.openapi`
- [x] Migrate `langchain.chains.ernie_functions` to
`langchain_community.chains.ernie_functions`
- [x] migrate `langchain/chains/llm_requests.py` to
`langchain_community.chains.llm_requests`
- [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder`
->
`langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder`
(namespace not ideal, but it needs to be moved to `langchain` to avoid
circular deps)
- [x] unit tests langchain -- add pytest.mark.community to some unit
tests that will stay in langchain
- [x] unit tests community -- move unit tests that depend on community
to community
- [x] mv integration tests that depend on community to community
- [x] mypy checks

Other todo

- [x] Make deprecation warnings not noisy (need to use warn deprecated
and check that things are implemented properly)
- [x] Update deprecation messages with timeline for code removal (likely
we actually won't be removing things until 0.4 release) -- will give
people more time to transition their code.
- [ ] Add information to deprecation warning to show users how to
migrate their code base using langchain-cli
- [ ] Remove any unnecessary requirements in langchain (e.g., is
SQLALchemy required?)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-08 16:46:52 -04:00

213 lines
7.1 KiB
Python

"""Test caching for LLMs and ChatModels."""
import sqlite3
from typing import Dict, Generator, List, Union
import pytest
from _pytest.fixtures import FixtureRequest
from langchain.globals import get_llm_cache, set_llm_cache
from langchain_core.caches import InMemoryCache
from langchain_core.language_models import FakeListChatModel, FakeListLLM
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.language_models.llms import BaseLLM
from langchain_core.load import dumps
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, Generation
from sqlalchemy import create_engine
from sqlalchemy.orm import Session
pytest.importorskip("langchain_community")
from langchain_community.cache import SQLAlchemyCache # noqa: E402
def get_sqlite_cache() -> SQLAlchemyCache:
return SQLAlchemyCache(
engine=create_engine(
"sqlite://", creator=lambda: sqlite3.connect("file::memory:?cache=shared")
)
)
CACHE_OPTIONS = [
InMemoryCache,
get_sqlite_cache,
]
@pytest.fixture(autouse=True, params=CACHE_OPTIONS)
def set_cache_and_teardown(request: FixtureRequest) -> Generator[None, None, None]:
# Will be run before each test
cache_instance = request.param
set_llm_cache(cache_instance())
if llm_cache := get_llm_cache():
llm_cache.clear()
else:
raise ValueError("Cache not set. This should never happen.")
yield
# Will be run after each test
if llm_cache:
llm_cache.clear()
set_llm_cache(None)
else:
raise ValueError("Cache not set. This should never happen.")
async def test_llm_caching() -> None:
prompt = "How are you?"
response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[response])
if llm_cache := get_llm_cache():
# sync test
llm_cache.update(
prompt=prompt,
llm_string=create_llm_string(llm),
return_val=[Generation(text=cached_response)],
)
assert llm.invoke(prompt) == cached_response
# async test
await llm_cache.aupdate(
prompt=prompt,
llm_string=create_llm_string(llm),
return_val=[Generation(text=cached_response)],
)
assert await llm.ainvoke(prompt) == cached_response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def test_old_sqlite_llm_caching() -> None:
llm_cache = get_llm_cache()
if isinstance(llm_cache, SQLAlchemyCache):
prompt = "How are you?"
response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[response])
items = [
llm_cache.cache_schema(
prompt=prompt,
llm=create_llm_string(llm),
response=cached_response,
idx=0,
)
]
with Session(llm_cache.engine) as session, session.begin():
for item in items:
session.merge(item)
assert llm.invoke(prompt) == cached_response
async def test_chat_model_caching() -> None:
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
response = "Test response"
cached_response = "Cached test response"
cached_message = AIMessage(content=cached_response)
llm = FakeListChatModel(responses=[response])
if llm_cache := get_llm_cache():
# sync test
llm_cache.update(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(),
return_val=[ChatGeneration(message=cached_message)],
)
result = llm.invoke(prompt)
assert isinstance(result, AIMessage)
assert result.content == cached_response
# async test
await llm_cache.aupdate(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(),
return_val=[ChatGeneration(message=cached_message)],
)
result = await llm.ainvoke(prompt)
assert isinstance(result, AIMessage)
assert result.content == cached_response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
async def test_chat_model_caching_params() -> None:
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
response = "Test response"
cached_response = "Cached test response"
cached_message = AIMessage(content=cached_response)
llm = FakeListChatModel(responses=[response])
if llm_cache := get_llm_cache():
# sync test
llm_cache.update(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(functions=[]),
return_val=[ChatGeneration(message=cached_message)],
)
result = llm.invoke(prompt, functions=[])
result_no_params = llm.invoke(prompt)
assert isinstance(result, AIMessage)
assert result.content == cached_response
assert isinstance(result_no_params, AIMessage)
assert result_no_params.content == response
# async test
await llm_cache.aupdate(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(functions=[]),
return_val=[ChatGeneration(message=cached_message)],
)
result = await llm.ainvoke(prompt, functions=[])
result_no_params = await llm.ainvoke(prompt)
assert isinstance(result, AIMessage)
assert result.content == cached_response
assert isinstance(result_no_params, AIMessage)
assert result_no_params.content == response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
async def test_llm_cache_clear() -> None:
prompt = "How are you?"
expected_response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[expected_response])
if llm_cache := get_llm_cache():
# sync test
llm_cache.update(
prompt=prompt,
llm_string=create_llm_string(llm),
return_val=[Generation(text=cached_response)],
)
llm_cache.clear()
response = llm.invoke(prompt)
assert response == expected_response
# async test
await llm_cache.aupdate(
prompt=prompt,
llm_string=create_llm_string(llm),
return_val=[Generation(text=cached_response)],
)
await llm_cache.aclear()
response = await llm.ainvoke(prompt)
assert response == expected_response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def create_llm_string(llm: Union[BaseLLM, BaseChatModel]) -> str:
_dict: Dict = llm.dict()
_dict["stop"] = None
return str(sorted([(k, v) for k, v in _dict.items()]))