mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-06 23:58:51 +00:00
poetry can't reliably handle resolving the number of optional "extended test" dependencies we have. If we instead just rely on pip to install extended test deps in CI, this isn't an issue.
204 lines
6.8 KiB
Python
204 lines
6.8 KiB
Python
from abc import ABC
|
|
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Type
|
|
|
|
import numpy as np
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import Field
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
if TYPE_CHECKING:
|
|
from docarray import BaseDoc
|
|
from docarray.index.abstract import BaseDocIndex
|
|
|
|
|
|
def _check_docarray_import() -> None:
|
|
try:
|
|
import docarray
|
|
|
|
da_version = docarray.__version__.split(".")
|
|
if int(da_version[0]) == 0 and int(da_version[1]) <= 31:
|
|
raise ImportError(
|
|
f"To use the DocArrayHnswSearch VectorStore the docarray "
|
|
f"version >=0.32.0 is expected, received: {docarray.__version__}."
|
|
f"To upgrade, please run: `pip install -U docarray`."
|
|
)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import docarray python package. "
|
|
"Please install it with `pip install docarray`."
|
|
)
|
|
|
|
|
|
class DocArrayIndex(VectorStore, ABC):
|
|
"""Base class for `DocArray` based vector stores."""
|
|
|
|
def __init__(
|
|
self,
|
|
doc_index: "BaseDocIndex",
|
|
embedding: Embeddings,
|
|
):
|
|
"""Initialize a vector store from DocArray's DocIndex."""
|
|
self.doc_index = doc_index
|
|
self.embedding = embedding
|
|
|
|
@staticmethod
|
|
def _get_doc_cls(**embeddings_params: Any) -> Type["BaseDoc"]:
|
|
"""Get docarray Document class describing the schema of DocIndex."""
|
|
from docarray import BaseDoc
|
|
from docarray.typing import NdArray
|
|
|
|
class DocArrayDoc(BaseDoc):
|
|
text: Optional[str] = Field(default=None, required=False)
|
|
embedding: Optional[NdArray] = Field(**embeddings_params)
|
|
metadata: Optional[dict] = Field(default=None, required=False)
|
|
|
|
return DocArrayDoc
|
|
|
|
@property
|
|
def doc_cls(self) -> Type["BaseDoc"]:
|
|
if self.doc_index._schema is None:
|
|
raise ValueError("doc_index expected to have non-null _schema attribute.")
|
|
return self.doc_index._schema
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Embed texts and add to the vector store.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
"""
|
|
ids: List[str] = []
|
|
embeddings = self.embedding.embed_documents(list(texts))
|
|
for i, (t, e) in enumerate(zip(texts, embeddings)):
|
|
m = metadatas[i] if metadatas else {}
|
|
doc = self.doc_cls(text=t, embedding=e, metadata=m)
|
|
self.doc_index.index([doc])
|
|
ids.append(str(doc.id))
|
|
|
|
return ids
|
|
|
|
def similarity_search_with_score(
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
Returns:
|
|
List of documents most similar to the query text and
|
|
cosine distance in float for each.
|
|
Lower score represents more similarity.
|
|
"""
|
|
query_embedding = self.embedding.embed_query(query)
|
|
query_doc = self.doc_cls(embedding=query_embedding) # type: ignore
|
|
docs, scores = self.doc_index.find(query_doc, search_field="embedding", limit=k)
|
|
|
|
result = [
|
|
(Document(page_content=doc.text, metadata=doc.metadata), score)
|
|
for doc, score in zip(docs, scores)
|
|
]
|
|
return result
|
|
|
|
def similarity_search(
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query.
|
|
"""
|
|
results = self.similarity_search_with_score(query, k=k, **kwargs)
|
|
return [doc for doc, _ in results]
|
|
|
|
def _similarity_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs and relevance scores, normalized on a scale from 0 to 1.
|
|
|
|
0 is dissimilar, 1 is most similar.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def similarity_search_by_vector(
|
|
self, embedding: List[float], k: int = 4, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query vector.
|
|
"""
|
|
|
|
query_doc = self.doc_cls(embedding=embedding) # type: ignore
|
|
docs = self.doc_index.find(
|
|
query_doc, search_field="embedding", limit=k
|
|
).documents
|
|
|
|
result = [
|
|
Document(page_content=doc.text, metadata=doc.metadata) for doc in docs
|
|
]
|
|
return result
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
query_embedding = self.embedding.embed_query(query)
|
|
query_doc = self.doc_cls(embedding=query_embedding) # type: ignore
|
|
|
|
docs = self.doc_index.find(
|
|
query_doc, search_field="embedding", limit=fetch_k
|
|
).documents
|
|
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array(query_embedding), docs.embedding, k=k
|
|
)
|
|
results = [
|
|
Document(page_content=docs[idx].text, metadata=docs[idx].metadata)
|
|
for idx in mmr_selected
|
|
]
|
|
return results
|