Related issue: #13896. In case Ollama is behind a proxy, proxy error responses cannot be viewed. You aren't even able to check response code. For example, if your Ollama has basic access authentication and it's not passed, `JSONDecodeError` will overwrite the truth response error. <details> <summary><b>Log now:</b></summary> ``` { "name": "JSONDecodeError", "message": "Expecting value: line 1 column 1 (char 0)", "stack": "--------------------------------------------------------------------------- JSONDecodeError Traceback (most recent call last) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/requests/models.py:971, in Response.json(self, **kwargs) 970 try: --> 971 return complexjson.loads(self.text, **kwargs) 972 except JSONDecodeError as e: 973 # Catch JSON-related errors and raise as requests.JSONDecodeError 974 # This aliases json.JSONDecodeError and simplejson.JSONDecodeError File /opt/miniforge3/envs/.gpt/lib/python3.10/json/__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 343 if (cls is None and object_hook is None and 344 parse_int is None and parse_float is None and 345 parse_constant is None and object_pairs_hook is None and not kw): --> 346 return _default_decoder.decode(s) 347 if cls is None: File /opt/miniforge3/envs/.gpt/lib/python3.10/json/decoder.py:337, in JSONDecoder.decode(self, s, _w) 333 \"\"\"Return the Python representation of ``s`` (a ``str`` instance 334 containing a JSON document). 335 336 \"\"\" --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() File /opt/miniforge3/envs/.gpt/lib/python3.10/json/decoder.py:355, in JSONDecoder.raw_decode(self, s, idx) 354 except StopIteration as err: --> 355 raise JSONDecodeError(\"Expecting value\", s, err.value) from None 356 return obj, end JSONDecodeError: Expecting value: line 1 column 1 (char 0) During handling of the above exception, another exception occurred: JSONDecodeError Traceback (most recent call last) Cell In[3], line 1 ----> 1 print(translate_func().invoke('text')) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/runnables/base.py:2053, in RunnableSequence.invoke(self, input, config) 2051 try: 2052 for i, step in enumerate(self.steps): -> 2053 input = step.invoke( 2054 input, 2055 # mark each step as a child run 2056 patch_config( 2057 config, callbacks=run_manager.get_child(f\"seq:step:{i+1}\") 2058 ), 2059 ) 2060 # finish the root run 2061 except BaseException as e: File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:165, in BaseChatModel.invoke(self, input, config, stop, **kwargs) 154 def invoke( 155 self, 156 input: LanguageModelInput, (...) 160 **kwargs: Any, 161 ) -> BaseMessage: 162 config = ensure_config(config) 163 return cast( 164 ChatGeneration, --> 165 self.generate_prompt( 166 [self._convert_input(input)], 167 stop=stop, 168 callbacks=config.get(\"callbacks\"), 169 tags=config.get(\"tags\"), 170 metadata=config.get(\"metadata\"), 171 run_name=config.get(\"run_name\"), 172 **kwargs, 173 ).generations[0][0], 174 ).message File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:543, in BaseChatModel.generate_prompt(self, prompts, stop, callbacks, **kwargs) 535 def generate_prompt( 536 self, 537 prompts: List[PromptValue], (...) 540 **kwargs: Any, 541 ) -> LLMResult: 542 prompt_messages = [p.to_messages() for p in prompts] --> 543 return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:407, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs) 405 if run_managers: 406 run_managers[i].on_llm_error(e, response=LLMResult(generations=[])) --> 407 raise e 408 flattened_outputs = [ 409 LLMResult(generations=[res.generations], llm_output=res.llm_output) 410 for res in results 411 ] 412 llm_output = self._combine_llm_outputs([res.llm_output for res in results]) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:397, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs) 394 for i, m in enumerate(messages): 395 try: 396 results.append( --> 397 self._generate_with_cache( 398 m, 399 stop=stop, 400 run_manager=run_managers[i] if run_managers else None, 401 **kwargs, 402 ) 403 ) 404 except BaseException as e: 405 if run_managers: File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:576, in BaseChatModel._generate_with_cache(self, messages, stop, run_manager, **kwargs) 572 raise ValueError( 573 \"Asked to cache, but no cache found at `langchain.cache`.\" 574 ) 575 if new_arg_supported: --> 576 return self._generate( 577 messages, stop=stop, run_manager=run_manager, **kwargs 578 ) 579 else: 580 return self._generate(messages, stop=stop, **kwargs) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:250, in ChatOllama._generate(self, messages, stop, run_manager, **kwargs) 226 def _generate( 227 self, 228 messages: List[BaseMessage], (...) 231 **kwargs: Any, 232 ) -> ChatResult: 233 \"\"\"Call out to Ollama's generate endpoint. 234 235 Args: (...) 247 ]) 248 \"\"\" --> 250 final_chunk = self._chat_stream_with_aggregation( 251 messages, 252 stop=stop, 253 run_manager=run_manager, 254 verbose=self.verbose, 255 **kwargs, 256 ) 257 chat_generation = ChatGeneration( 258 message=AIMessage(content=final_chunk.text), 259 generation_info=final_chunk.generation_info, 260 ) 261 return ChatResult(generations=[chat_generation]) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:183, in ChatOllama._chat_stream_with_aggregation(self, messages, stop, run_manager, verbose, **kwargs) 174 def _chat_stream_with_aggregation( 175 self, 176 messages: List[BaseMessage], (...) 180 **kwargs: Any, 181 ) -> ChatGenerationChunk: 182 final_chunk: Optional[ChatGenerationChunk] = None --> 183 for stream_resp in self._create_chat_stream(messages, stop, **kwargs): 184 if stream_resp: 185 chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:156, in ChatOllama._create_chat_stream(self, messages, stop, **kwargs) 147 def _create_chat_stream( 148 self, 149 messages: List[BaseMessage], 150 stop: Optional[List[str]] = None, 151 **kwargs: Any, 152 ) -> Iterator[str]: 153 payload = { 154 \"messages\": self._convert_messages_to_ollama_messages(messages), 155 } --> 156 yield from self._create_stream( 157 payload=payload, stop=stop, api_url=f\"{self.base_url}/api/chat/\", **kwargs 158 ) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/llms/ollama.py:234, in _OllamaCommon._create_stream(self, api_url, payload, stop, **kwargs) 228 raise OllamaEndpointNotFoundError( 229 \"Ollama call failed with status code 404. \" 230 \"Maybe your model is not found \" 231 f\"and you should pull the model with `ollama pull {self.model}`.\" 232 ) 233 else: --> 234 optional_detail = response.json().get(\"error\") 235 raise ValueError( 236 f\"Ollama call failed with status code {response.status_code}.\" 237 f\" Details: {optional_detail}\" 238 ) 239 return response.iter_lines(decode_unicode=True) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/requests/models.py:975, in Response.json(self, **kwargs) 971 return complexjson.loads(self.text, **kwargs) 972 except JSONDecodeError as e: 973 # Catch JSON-related errors and raise as requests.JSONDecodeError 974 # This aliases json.JSONDecodeError and simplejson.JSONDecodeError --> 975 raise RequestsJSONDecodeError(e.msg, e.doc, e.pos) JSONDecodeError: Expecting value: line 1 column 1 (char 0)" } ``` </details> <details> <summary><b>Log after a fix:</b></summary> ``` { "name": "ValueError", "message": "Ollama call failed with status code 401. Details: <html>\r <head><title>401 Authorization Required</title></head>\r <body>\r <center><h1>401 Authorization Required</h1></center>\r <hr><center>nginx/1.18.0 (Ubuntu)</center>\r </body>\r </html>\r ", "stack": "--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 1 ----> 1 print(translate_func().invoke('text')) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/runnables/base.py:2053, in RunnableSequence.invoke(self, input, config) 2051 try: 2052 for i, step in enumerate(self.steps): -> 2053 input = step.invoke( 2054 input, 2055 # mark each step as a child run 2056 patch_config( 2057 config, callbacks=run_manager.get_child(f\"seq:step:{i+1}\") 2058 ), 2059 ) 2060 # finish the root run 2061 except BaseException as e: File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:165, in BaseChatModel.invoke(self, input, config, stop, **kwargs) 154 def invoke( 155 self, 156 input: LanguageModelInput, (...) 160 **kwargs: Any, 161 ) -> BaseMessage: 162 config = ensure_config(config) 163 return cast( 164 ChatGeneration, --> 165 self.generate_prompt( 166 [self._convert_input(input)], 167 stop=stop, 168 callbacks=config.get(\"callbacks\"), 169 tags=config.get(\"tags\"), 170 metadata=config.get(\"metadata\"), 171 run_name=config.get(\"run_name\"), 172 **kwargs, 173 ).generations[0][0], 174 ).message File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:543, in BaseChatModel.generate_prompt(self, prompts, stop, callbacks, **kwargs) 535 def generate_prompt( 536 self, 537 prompts: List[PromptValue], (...) 540 **kwargs: Any, 541 ) -> LLMResult: 542 prompt_messages = [p.to_messages() for p in prompts] --> 543 return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:407, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs) 405 if run_managers: 406 run_managers[i].on_llm_error(e, response=LLMResult(generations=[])) --> 407 raise e 408 flattened_outputs = [ 409 LLMResult(generations=[res.generations], llm_output=res.llm_output) 410 for res in results 411 ] 412 llm_output = self._combine_llm_outputs([res.llm_output for res in results]) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:397, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs) 394 for i, m in enumerate(messages): 395 try: 396 results.append( --> 397 self._generate_with_cache( 398 m, 399 stop=stop, 400 run_manager=run_managers[i] if run_managers else None, 401 **kwargs, 402 ) 403 ) 404 except BaseException as e: 405 if run_managers: File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:576, in BaseChatModel._generate_with_cache(self, messages, stop, run_manager, **kwargs) 572 raise ValueError( 573 \"Asked to cache, but no cache found at `langchain.cache`.\" 574 ) 575 if new_arg_supported: --> 576 return self._generate( 577 messages, stop=stop, run_manager=run_manager, **kwargs 578 ) 579 else: 580 return self._generate(messages, stop=stop, **kwargs) File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:250, in ChatOllama._generate(self, messages, stop, run_manager, **kwargs) 226 def _generate( 227 self, 228 messages: List[BaseMessage], (...) 231 **kwargs: Any, 232 ) -> ChatResult: 233 \"\"\"Call out to Ollama's generate endpoint. 234 235 Args: (...) 247 ]) 248 \"\"\" --> 250 final_chunk = self._chat_stream_with_aggregation( 251 messages, 252 stop=stop, 253 run_manager=run_manager, 254 verbose=self.verbose, 255 **kwargs, 256 ) 257 chat_generation = ChatGeneration( 258 message=AIMessage(content=final_chunk.text), 259 generation_info=final_chunk.generation_info, 260 ) 261 return ChatResult(generations=[chat_generation]) File /storage/gpt-project/Repos/repo_nikita/gpt_lib/langchain/ollama.py:328, in ChatOllamaCustom._chat_stream_with_aggregation(self, messages, stop, run_manager, verbose, **kwargs) 319 def _chat_stream_with_aggregation( 320 self, 321 messages: List[BaseMessage], (...) 325 **kwargs: Any, 326 ) -> ChatGenerationChunk: 327 final_chunk: Optional[ChatGenerationChunk] = None --> 328 for stream_resp in self._create_chat_stream(messages, stop, **kwargs): 329 if stream_resp: 330 chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp) File /storage/gpt-project/Repos/repo_nikita/gpt_lib/langchain/ollama.py:301, in ChatOllamaCustom._create_chat_stream(self, messages, stop, **kwargs) 292 def _create_chat_stream( 293 self, 294 messages: List[BaseMessage], 295 stop: Optional[List[str]] = None, 296 **kwargs: Any, 297 ) -> Iterator[str]: 298 payload = { 299 \"messages\": self._convert_messages_to_ollama_messages(messages), 300 } --> 301 yield from self._create_stream( 302 payload=payload, stop=stop, api_url=f\"{self.base_url}/api/chat\", **kwargs 303 ) File /storage/gpt-project/Repos/repo_nikita/gpt_lib/langchain/ollama.py:134, in _OllamaCommonCustom._create_stream(self, api_url, payload, stop, **kwargs) 132 else: 133 optional_detail = response.text --> 134 raise ValueError( 135 f\"Ollama call failed with status code {response.status_code}.\" 136 f\" Details: {optional_detail}\" 137 ) 138 return response.iter_lines(decode_unicode=True) ValueError: Ollama call failed with status code 401. Details: <html>\r <head><title>401 Authorization Required</title></head>\r <body>\r <center><h1>401 Authorization Required</h1></center>\r <hr><center>nginx/1.18.0 (Ubuntu)</center>\r </body>\r </html>\r " } ``` </details> The same is true for timeout errors or when you simply mistyped in `base_url` arg and get response from some other service, for instance. Real Ollama errors are still clearly readable: ``` ValueError: Ollama call failed with status code 400. Details: {"error":"invalid options: unknown_option"} ``` --------- Co-authored-by: Bagatur <baskaryan@gmail.com> |
||
---|---|---|
.devcontainer | ||
.github | ||
cookbook | ||
docker | ||
docs | ||
libs | ||
templates | ||
.gitattributes | ||
.gitignore | ||
.readthedocs.yaml | ||
CITATION.cff | ||
LICENSE | ||
Makefile | ||
MIGRATE.md | ||
poetry.lock | ||
poetry.toml | ||
pyproject.toml | ||
README.md | ||
SECURITY.md |
🦜️🔗 LangChain
⚡ Build context-aware reasoning applications ⚡
Looking for the JS/TS library? Check out LangChain.js.
To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to speak with our sales team.
Quick Install
With pip:
pip install langchain
With conda:
conda install langchain -c conda-forge
🤔 What is LangChain?
LangChain is a framework for developing applications powered by language models. It enables applications that:
- Are context-aware: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
- Reason: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
This framework consists of several parts.
- LangChain Libraries: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
- LangChain Templates: A collection of easily deployable reference architectures for a wide variety of tasks.
- LangServe: A library for deploying LangChain chains as a REST API.
- LangSmith: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
- LangGraph: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.
The LangChain libraries themselves are made up of several different packages.
langchain-core
: Base abstractions and LangChain Expression Language.langchain-community
: Third party integrations.langchain
: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
🧱 What can you build with LangChain?
❓ Retrieval augmented generation
- Documentation
- End-to-end Example: Chat LangChain and repo
💬 Analyzing structured data
- Documentation
- End-to-end Example: SQL Llama2 Template
🤖 Chatbots
- Documentation
- End-to-end Example: Web LangChain (web researcher chatbot) and repo
And much more! Head to the Use cases section of the docs for more.
🚀 How does LangChain help?
The main value props of the LangChain libraries are:
- Components: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
- Off-the-shelf chains: built-in assemblages of components for accomplishing higher-level tasks
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
Components fall into the following modules:
📃 Model I/O:
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
📚 Retrieval:
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
🤖 Agents:
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
📖 Documentation
Please see here for full documentation, which includes:
- Getting started: installation, setting up the environment, simple examples
- Overview of the interfaces, modules, and integrations
- Use case walkthroughs and best practice guides
- LangSmith, LangServe, and LangChain Template overviews
- Reference: full API docs
💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see here.