mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-27 19:46:55 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
154 lines
5.7 KiB
Python
154 lines
5.7 KiB
Python
"""
|
|
Question answering over an RDF or OWL graph using SPARQL.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.prompts.base import BasePromptTemplate
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
SPARQL_GENERATION_SELECT_PROMPT,
|
|
SPARQL_GENERATION_UPDATE_PROMPT,
|
|
SPARQL_INTENT_PROMPT,
|
|
SPARQL_QA_PROMPT,
|
|
)
|
|
from langchain_community.graphs.rdf_graph import RdfGraph
|
|
|
|
|
|
class GraphSparqlQAChain(Chain):
|
|
"""Question-answering against an RDF or OWL graph by generating SPARQL statements.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
graph: RdfGraph = Field(exclude=True)
|
|
sparql_generation_select_chain: LLMChain
|
|
sparql_generation_update_chain: LLMChain
|
|
sparql_intent_chain: LLMChain
|
|
qa_chain: LLMChain
|
|
return_sparql_query: bool = False
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
sparql_query_key: str = "sparql_query" #: :meta private:
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return the output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
*,
|
|
qa_prompt: BasePromptTemplate = SPARQL_QA_PROMPT,
|
|
sparql_select_prompt: BasePromptTemplate = SPARQL_GENERATION_SELECT_PROMPT,
|
|
sparql_update_prompt: BasePromptTemplate = SPARQL_GENERATION_UPDATE_PROMPT,
|
|
sparql_intent_prompt: BasePromptTemplate = SPARQL_INTENT_PROMPT,
|
|
**kwargs: Any,
|
|
) -> GraphSparqlQAChain:
|
|
"""Initialize from LLM."""
|
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
|
sparql_generation_select_chain = LLMChain(llm=llm, prompt=sparql_select_prompt)
|
|
sparql_generation_update_chain = LLMChain(llm=llm, prompt=sparql_update_prompt)
|
|
sparql_intent_chain = LLMChain(llm=llm, prompt=sparql_intent_prompt)
|
|
|
|
return cls(
|
|
qa_chain=qa_chain,
|
|
sparql_generation_select_chain=sparql_generation_select_chain,
|
|
sparql_generation_update_chain=sparql_generation_update_chain,
|
|
sparql_intent_chain=sparql_intent_chain,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
"""
|
|
Generate SPARQL query, use it to retrieve a response from the gdb and answer
|
|
the question.
|
|
"""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
callbacks = _run_manager.get_child()
|
|
prompt = inputs[self.input_key]
|
|
|
|
_intent = self.sparql_intent_chain.run({"prompt": prompt}, callbacks=callbacks)
|
|
intent = _intent.strip()
|
|
|
|
if "SELECT" in intent and "UPDATE" not in intent:
|
|
sparql_generation_chain = self.sparql_generation_select_chain
|
|
intent = "SELECT"
|
|
elif "UPDATE" in intent and "SELECT" not in intent:
|
|
sparql_generation_chain = self.sparql_generation_update_chain
|
|
intent = "UPDATE"
|
|
else:
|
|
raise ValueError(
|
|
"I am sorry, but this prompt seems to fit none of the currently "
|
|
"supported SPARQL query types, i.e., SELECT and UPDATE."
|
|
)
|
|
|
|
_run_manager.on_text("Identified intent:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(intent, color="green", end="\n", verbose=self.verbose)
|
|
|
|
generated_sparql = sparql_generation_chain.run(
|
|
{"prompt": prompt, "schema": self.graph.get_schema}, callbacks=callbacks
|
|
)
|
|
|
|
_run_manager.on_text("Generated SPARQL:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
generated_sparql, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
if intent == "SELECT":
|
|
context = self.graph.query(generated_sparql)
|
|
|
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(context), color="green", end="\n", verbose=self.verbose
|
|
)
|
|
result = self.qa_chain(
|
|
{"prompt": prompt, "context": context},
|
|
callbacks=callbacks,
|
|
)
|
|
res = result[self.qa_chain.output_key]
|
|
elif intent == "UPDATE":
|
|
self.graph.update(generated_sparql)
|
|
res = "Successfully inserted triples into the graph."
|
|
else:
|
|
raise ValueError("Unsupported SPARQL query type.")
|
|
|
|
chain_result: Dict[str, Any] = {self.output_key: res}
|
|
if self.return_sparql_query:
|
|
chain_result[self.sparql_query_key] = generated_sparql
|
|
return chain_result
|