mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-30 04:45:23 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
99 lines
3.2 KiB
Python
99 lines
3.2 KiB
Python
"""Chain that hits a URL and then uses an LLM to parse results."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains import LLMChain
|
|
from langchain.chains.base import Chain
|
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
|
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
|
|
|
from langchain_community.utilities.requests import TextRequestsWrapper
|
|
|
|
DEFAULT_HEADERS = {
|
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501
|
|
}
|
|
|
|
|
|
class LLMRequestsChain(Chain):
|
|
"""Chain that requests a URL and then uses an LLM to parse results.
|
|
|
|
**Security Note**: This chain can make GET requests to arbitrary URLs,
|
|
including internal URLs.
|
|
|
|
Control access to who can run this chain and what network access
|
|
this chain has.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
llm_chain: LLMChain # type: ignore[valid-type]
|
|
requests_wrapper: TextRequestsWrapper = Field(
|
|
default_factory=lambda: TextRequestsWrapper(headers=DEFAULT_HEADERS),
|
|
exclude=True,
|
|
)
|
|
text_length: int = 8000
|
|
requests_key: str = "requests_result" #: :meta private:
|
|
input_key: str = "url" #: :meta private:
|
|
output_key: str = "output" #: :meta private:
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Will be whatever keys the prompt expects.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Will always return text key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.output_key]
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
try:
|
|
from bs4 import BeautifulSoup # noqa: F401
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import bs4 python package. "
|
|
"Please install it with `pip install bs4`."
|
|
)
|
|
return values
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, Any]:
|
|
from bs4 import BeautifulSoup
|
|
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
# Other keys are assumed to be needed for LLM prediction
|
|
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
|
|
url = inputs[self.input_key]
|
|
res = self.requests_wrapper.get(url)
|
|
# extract the text from the html
|
|
soup = BeautifulSoup(res, "html.parser")
|
|
other_keys[self.requests_key] = soup.get_text()[: self.text_length]
|
|
result = self.llm_chain.predict( # type: ignore[attr-defined]
|
|
callbacks=_run_manager.get_child(), **other_keys
|
|
)
|
|
return {self.output_key: result}
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "llm_requests_chain"
|