mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-27 11:41:51 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
106 lines
3.1 KiB
Python
106 lines
3.1 KiB
Python
"""Fake ChatModel for testing purposes."""
|
|
|
|
import asyncio
|
|
import time
|
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel
|
|
from langchain_core.messages import AIMessageChunk, BaseMessage
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
|
|
|
|
class FakeMessagesListChatModel(BaseChatModel):
|
|
"""Fake ChatModel for testing purposes."""
|
|
|
|
responses: List[BaseMessage]
|
|
sleep: Optional[float] = None
|
|
i: int = 0
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
response = self.responses[self.i]
|
|
if self.i < len(self.responses) - 1:
|
|
self.i += 1
|
|
else:
|
|
self.i = 0
|
|
generation = ChatGeneration(message=response)
|
|
return ChatResult(generations=[generation])
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "fake-messages-list-chat-model"
|
|
|
|
|
|
class FakeListChatModel(SimpleChatModel):
|
|
"""Fake ChatModel for testing purposes."""
|
|
|
|
responses: List
|
|
sleep: Optional[float] = None
|
|
i: int = 0
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "fake-list-chat-model"
|
|
|
|
def _call(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""First try to lookup in queries, else return 'foo' or 'bar'."""
|
|
response = self.responses[self.i]
|
|
if self.i < len(self.responses) - 1:
|
|
self.i += 1
|
|
else:
|
|
self.i = 0
|
|
return response
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Union[List[str], None] = None,
|
|
run_manager: Union[CallbackManagerForLLMRun, None] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
response = self.responses[self.i]
|
|
if self.i < len(self.responses) - 1:
|
|
self.i += 1
|
|
else:
|
|
self.i = 0
|
|
for c in response:
|
|
if self.sleep is not None:
|
|
time.sleep(self.sleep)
|
|
yield ChatGenerationChunk(message=AIMessageChunk(content=c))
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Union[List[str], None] = None,
|
|
run_manager: Union[AsyncCallbackManagerForLLMRun, None] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
response = self.responses[self.i]
|
|
if self.i < len(self.responses) - 1:
|
|
self.i += 1
|
|
else:
|
|
self.i = 0
|
|
for c in response:
|
|
if self.sleep is not None:
|
|
await asyncio.sleep(self.sleep)
|
|
yield ChatGenerationChunk(message=AIMessageChunk(content=c))
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
return {"responses": self.responses}
|