mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-30 04:45:23 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
358 lines
12 KiB
Python
358 lines
12 KiB
Python
import json
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import Extra
|
|
|
|
from langchain_community.llms.oci_generative_ai import OCIGenAIBase
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
|
|
|
|
|
|
class Provider(ABC):
|
|
@property
|
|
@abstractmethod
|
|
def stop_sequence_key(self) -> str: ...
|
|
|
|
@abstractmethod
|
|
def chat_response_to_text(self, response: Any) -> str: ...
|
|
|
|
@abstractmethod
|
|
def chat_stream_to_text(self, event_data: Dict) -> str: ...
|
|
|
|
@abstractmethod
|
|
def chat_generation_info(self, response: Any) -> Dict[str, Any]: ...
|
|
|
|
@abstractmethod
|
|
def get_role(self, message: BaseMessage) -> str: ...
|
|
|
|
@abstractmethod
|
|
def messages_to_oci_params(self, messages: Any) -> Dict[str, Any]: ...
|
|
|
|
|
|
class CohereProvider(Provider):
|
|
stop_sequence_key = "stop_sequences"
|
|
|
|
def __init__(self) -> None:
|
|
from oci.generative_ai_inference import models
|
|
|
|
self.oci_chat_request = models.CohereChatRequest
|
|
self.oci_chat_message = {
|
|
"USER": models.CohereUserMessage,
|
|
"CHATBOT": models.CohereChatBotMessage,
|
|
"SYSTEM": models.CohereSystemMessage,
|
|
}
|
|
self.chat_api_format = models.BaseChatRequest.API_FORMAT_COHERE
|
|
|
|
def chat_response_to_text(self, response: Any) -> str:
|
|
return response.data.chat_response.text
|
|
|
|
def chat_stream_to_text(self, event_data: Dict) -> str:
|
|
if "text" in event_data and "finishReason" not in event_data:
|
|
return event_data["text"]
|
|
else:
|
|
return ""
|
|
|
|
def chat_generation_info(self, response: Any) -> Dict[str, Any]:
|
|
return {
|
|
"finish_reason": response.data.chat_response.finish_reason,
|
|
}
|
|
|
|
def get_role(self, message: BaseMessage) -> str:
|
|
if isinstance(message, HumanMessage):
|
|
return "USER"
|
|
elif isinstance(message, AIMessage):
|
|
return "CHATBOT"
|
|
elif isinstance(message, SystemMessage):
|
|
return "SYSTEM"
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
def messages_to_oci_params(self, messages: Sequence[ChatMessage]) -> Dict[str, Any]:
|
|
oci_chat_history = [
|
|
self.oci_chat_message[self.get_role(msg)](message=msg.content)
|
|
for msg in messages[:-1]
|
|
]
|
|
oci_params = {
|
|
"message": messages[-1].content,
|
|
"chat_history": oci_chat_history,
|
|
"api_format": self.chat_api_format,
|
|
}
|
|
|
|
return oci_params
|
|
|
|
|
|
class MetaProvider(Provider):
|
|
stop_sequence_key = "stop"
|
|
|
|
def __init__(self) -> None:
|
|
from oci.generative_ai_inference import models
|
|
|
|
self.oci_chat_request = models.GenericChatRequest
|
|
self.oci_chat_message = {
|
|
"USER": models.UserMessage,
|
|
"SYSTEM": models.SystemMessage,
|
|
"ASSISTANT": models.AssistantMessage,
|
|
}
|
|
self.oci_chat_message_content = models.TextContent
|
|
self.chat_api_format = models.BaseChatRequest.API_FORMAT_GENERIC
|
|
|
|
def chat_response_to_text(self, response: Any) -> str:
|
|
return response.data.chat_response.choices[0].message.content[0].text
|
|
|
|
def chat_stream_to_text(self, event_data: Dict) -> str:
|
|
if "message" in event_data:
|
|
return event_data["message"]["content"][0]["text"]
|
|
else:
|
|
return ""
|
|
|
|
def chat_generation_info(self, response: Any) -> Dict[str, Any]:
|
|
return {
|
|
"finish_reason": response.data.chat_response.choices[0].finish_reason,
|
|
"time_created": str(response.data.chat_response.time_created),
|
|
}
|
|
|
|
def get_role(self, message: BaseMessage) -> str:
|
|
# meta only supports alternating user/assistant roles
|
|
if isinstance(message, HumanMessage):
|
|
return "USER"
|
|
elif isinstance(message, AIMessage):
|
|
return "ASSISTANT"
|
|
elif isinstance(message, SystemMessage):
|
|
return "SYSTEM"
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
def messages_to_oci_params(self, messages: List[BaseMessage]) -> Dict[str, Any]:
|
|
oci_messages = [
|
|
self.oci_chat_message[self.get_role(msg)](
|
|
content=[self.oci_chat_message_content(text=msg.content)]
|
|
)
|
|
for msg in messages
|
|
]
|
|
oci_params = {
|
|
"messages": oci_messages,
|
|
"api_format": self.chat_api_format,
|
|
"top_k": -1,
|
|
}
|
|
|
|
return oci_params
|
|
|
|
|
|
class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
|
|
"""ChatOCIGenAI chat model integration.
|
|
|
|
Setup:
|
|
Install ``langchain-community`` and the ``oci`` sdk.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community oci
|
|
|
|
Key init args — completion params:
|
|
model_id: str
|
|
Id of the OCIGenAI chat model to use, e.g., cohere.command-r-16k.
|
|
is_stream: bool
|
|
Whether to stream back partial progress
|
|
model_kwargs: Optional[Dict]
|
|
Keyword arguments to pass to the specific model used, e.g., temperature, max_tokens.
|
|
|
|
Key init args — client params:
|
|
service_endpoint: str
|
|
The endpoint URL for the OCIGenAI service, e.g., https://inference.generativeai.us-chicago-1.oci.oraclecloud.com.
|
|
compartment_id: str
|
|
The compartment OCID.
|
|
auth_type: str
|
|
The authentication type to use, e.g., API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPAL, RESOURCE_PRINCIPAL.
|
|
auth_profile: Optional[str]
|
|
The name of the profile in ~/.oci/config, if not specified , DEFAULT will be used.
|
|
provider: str
|
|
Provider name of the model. Default to None, will try to be derived from the model_id otherwise, requires user input.
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatOCIGenAI
|
|
|
|
chat = ChatOCIGenAI(
|
|
model_id="cohere.command-r-16k",
|
|
service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com",
|
|
compartment_id="MY_OCID",
|
|
model_kwargs={"temperature": 0.7, "max_tokens": 500},
|
|
)
|
|
|
|
Invoke:
|
|
.. code-block:: python
|
|
messages = [
|
|
SystemMessage(content="your are an AI assistant."),
|
|
AIMessage(content="Hi there human!"),
|
|
HumanMessage(content="tell me a joke."),
|
|
]
|
|
response = chat.invoke(messages)
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for r in chat.stream(messages):
|
|
print(r.content, end="", flush=True)
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
response = chat.invoke(messages)
|
|
print(response.response_metadata)
|
|
|
|
""" # noqa: E501
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "oci_generative_ai_chat"
|
|
|
|
@property
|
|
def _provider_map(self) -> Mapping[str, Any]:
|
|
"""Get the provider map"""
|
|
return {
|
|
"cohere": CohereProvider(),
|
|
"meta": MetaProvider(),
|
|
}
|
|
|
|
@property
|
|
def _provider(self) -> Any:
|
|
"""Get the internal provider object"""
|
|
return self._get_provider(provider_map=self._provider_map)
|
|
|
|
def _prepare_request(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]],
|
|
kwargs: Dict[str, Any],
|
|
stream: bool,
|
|
) -> Dict[str, Any]:
|
|
try:
|
|
from oci.generative_ai_inference import models
|
|
|
|
except ImportError as ex:
|
|
raise ModuleNotFoundError(
|
|
"Could not import oci python package. "
|
|
"Please make sure you have the oci package installed."
|
|
) from ex
|
|
oci_params = self._provider.messages_to_oci_params(messages)
|
|
oci_params["is_stream"] = stream # self.is_stream
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
if stop is not None:
|
|
_model_kwargs[self._provider.stop_sequence_key] = stop
|
|
|
|
chat_params = {**_model_kwargs, **kwargs, **oci_params}
|
|
|
|
if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX):
|
|
serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id)
|
|
else:
|
|
serving_mode = models.OnDemandServingMode(model_id=self.model_id)
|
|
|
|
request = models.ChatDetails(
|
|
compartment_id=self.compartment_id,
|
|
serving_mode=serving_mode,
|
|
chat_request=self._provider.oci_chat_request(**chat_params),
|
|
)
|
|
|
|
return request
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Call out to a OCIGenAI chat model.
|
|
|
|
Args:
|
|
messages: list of LangChain messages
|
|
stop: Optional list of stop words to use.
|
|
|
|
Returns:
|
|
LangChain ChatResult
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
HumanMessage(content="hello!"),
|
|
AIMessage(content="Hi there human!"),
|
|
HumanMessage(content="Meow!")
|
|
]
|
|
|
|
response = llm.invoke(messages)
|
|
"""
|
|
if self.is_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
request = self._prepare_request(messages, stop, kwargs, stream=False)
|
|
response = self.client.chat(request)
|
|
|
|
content = self._provider.chat_response_to_text(response)
|
|
|
|
if stop is not None:
|
|
content = enforce_stop_tokens(content, stop)
|
|
|
|
generation_info = self._provider.chat_generation_info(response)
|
|
|
|
llm_output = {
|
|
"model_id": response.data.model_id,
|
|
"model_version": response.data.model_version,
|
|
"request_id": response.request_id,
|
|
"content-length": response.headers["content-length"],
|
|
}
|
|
|
|
return ChatResult(
|
|
generations=[
|
|
ChatGeneration(
|
|
message=AIMessage(content=content), generation_info=generation_info
|
|
)
|
|
],
|
|
llm_output=llm_output,
|
|
)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
request = self._prepare_request(messages, stop, kwargs, stream=True)
|
|
response = self.client.chat(request)
|
|
|
|
for event in response.data.events():
|
|
delta = self._provider.chat_stream_to_text(json.loads(event.data))
|
|
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(delta, chunk=chunk)
|
|
yield chunk
|