langchain/libs/community/langchain_community/document_loaders/notebook.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

138 lines
4.2 KiB
Python

"""Loads .ipynb notebook files."""
import json
from pathlib import Path
from typing import Any, List, Union
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
def concatenate_cells(
cell: dict, include_outputs: bool, max_output_length: int, traceback: bool
) -> str:
"""Combine cells information in a readable format ready to be used.
Args:
cell: A dictionary
include_outputs: Whether to include the outputs of the cell.
max_output_length: Maximum length of the output to be displayed.
traceback: Whether to return a traceback of the error.
Returns:
A string with the cell information.
"""
cell_type = cell["cell_type"]
source = cell["source"]
if include_outputs:
try:
output = cell["outputs"]
except KeyError:
pass
if include_outputs and cell_type == "code" and output:
if "ename" in output[0].keys():
error_name = output[0]["ename"]
error_value = output[0]["evalue"]
if traceback:
traceback = output[0]["traceback"]
return (
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
f" with description '{error_value}'\n"
f"and traceback '{traceback}'\n\n"
)
else:
return (
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
f"with description '{error_value}'\n\n"
)
elif output[0]["output_type"] == "stream":
output = output[0]["text"]
min_output = min(max_output_length, len(output))
return (
f"'{cell_type}' cell: '{source}'\n with "
f"output: '{output[:min_output]}'\n\n"
)
else:
return f"'{cell_type}' cell: '{source}'\n\n"
return ""
def remove_newlines(x: Any) -> Any:
"""Recursively remove newlines, no matter the data structure they are stored in."""
if isinstance(x, str):
return x.replace("\n", "")
elif isinstance(x, list):
return [remove_newlines(elem) for elem in x]
elif isinstance(x, dict):
return {k: remove_newlines(v) for (k, v) in x.items()}
else:
return x
class NotebookLoader(BaseLoader):
"""Load `Jupyter notebook` (.ipynb) files."""
def __init__(
self,
path: Union[str, Path],
include_outputs: bool = False,
max_output_length: int = 10,
remove_newline: bool = False,
traceback: bool = False,
):
"""Initialize with a path.
Args:
path: The path to load the notebook from.
include_outputs: Whether to include the outputs of the cell.
Defaults to False.
max_output_length: Maximum length of the output to be displayed.
Defaults to 10.
remove_newline: Whether to remove newlines from the notebook.
Defaults to False.
traceback: Whether to return a traceback of the error.
Defaults to False.
"""
self.file_path = path
self.include_outputs = include_outputs
self.max_output_length = max_output_length
self.remove_newline = remove_newline
self.traceback = traceback
def load(
self,
) -> List[Document]:
"""Load documents."""
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
filtered_data = [
{k: v for (k, v) in cell.items() if k in ["cell_type", "source", "outputs"]}
for cell in d["cells"]
]
if self.remove_newline:
filtered_data = list(map(remove_newlines, filtered_data))
text = "".join(
list(
map(
lambda x: concatenate_cells(
x, self.include_outputs, self.max_output_length, self.traceback
),
filtered_data,
)
)
)
metadata = {"source": str(p)}
return [Document(page_content=text, metadata=metadata)]