mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-27 11:41:51 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
77 lines
2.5 KiB
Python
77 lines
2.5 KiB
Python
"""Anyscale embeddings wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Dict
|
|
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
from langchain_community.utils.openai import is_openai_v1
|
|
|
|
DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1"
|
|
DEFAULT_MODEL = "thenlper/gte-large"
|
|
|
|
|
|
class AnyscaleEmbeddings(OpenAIEmbeddings):
|
|
"""`Anyscale` Embeddings API."""
|
|
|
|
anyscale_api_key: SecretStr = Field(default=None)
|
|
"""AnyScale Endpoints API keys."""
|
|
model: str = Field(default=DEFAULT_MODEL)
|
|
"""Model name to use."""
|
|
anyscale_api_base: str = Field(default=DEFAULT_API_BASE)
|
|
"""Base URL path for API requests."""
|
|
tiktoken_enabled: bool = False
|
|
"""Set this to False for non-OpenAI implementations of the embeddings API"""
|
|
embedding_ctx_length: int = 500
|
|
"""The maximum number of tokens to embed at once."""
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {
|
|
"anyscale_api_key": "ANYSCALE_API_KEY",
|
|
}
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: dict) -> dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["anyscale_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"anyscale_api_key",
|
|
"ANYSCALE_API_KEY",
|
|
)
|
|
)
|
|
values["anyscale_api_base"] = get_from_dict_or_env(
|
|
values,
|
|
"anyscale_api_base",
|
|
"ANYSCALE_API_BASE",
|
|
default=DEFAULT_API_BASE,
|
|
)
|
|
try:
|
|
import openai
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import openai python package. "
|
|
"Please install it with `pip install openai`."
|
|
)
|
|
if is_openai_v1():
|
|
# For backwards compatibility.
|
|
client_params = {
|
|
"api_key": values["anyscale_api_key"].get_secret_value(),
|
|
"base_url": values["anyscale_api_base"],
|
|
}
|
|
values["client"] = openai.OpenAI(**client_params).embeddings
|
|
else:
|
|
values["openai_api_base"] = values["anyscale_api_base"]
|
|
values["openai_api_key"] = values["anyscale_api_key"].get_secret_value()
|
|
values["client"] = openai.Embedding
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "anyscale-embedding"
|