langchain/libs/community/tests/integration_tests/chat_models/test_bedrock.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

165 lines
5.5 KiB
Python

"""Test Bedrock chat model."""
from typing import Any, cast
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import (
AIMessageChunk,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_community.chat_models import BedrockChat
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
@pytest.fixture
def chat() -> BedrockChat:
return BedrockChat(model_id="anthropic.claude-v2", model_kwargs={"temperature": 0}) # type: ignore[call-arg]
@pytest.mark.scheduled
def test_chat_bedrock(chat: BedrockChat) -> None:
"""Test BedrockChat wrapper."""
system = SystemMessage(content="You are a helpful assistant.")
human = HumanMessage(content="Hello")
response = chat.invoke([system, human])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
def test_chat_bedrock_generate(chat: BedrockChat) -> None:
"""Test BedrockChat wrapper with generate."""
message = HumanMessage(content="Hello")
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
def test_chat_bedrock_generate_with_token_usage(chat: BedrockChat) -> None:
"""Test BedrockChat wrapper with generate."""
message = HumanMessage(content="Hello")
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert isinstance(response.llm_output, dict)
usage = response.llm_output["usage"]
assert usage["prompt_tokens"] == 20
assert usage["completion_tokens"] > 0
assert usage["total_tokens"] > 0
@pytest.mark.scheduled
def test_chat_bedrock_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = BedrockChat( # type: ignore[call-arg]
model_id="anthropic.claude-v2",
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
def test_chat_bedrock_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = BedrockChat( # type: ignore[call-arg]
model_id="anthropic.claude-v2",
callback_manager=callback_manager,
)
list(chat.stream("hi"))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert generation.generations[0][0].text == "Hello!"
@pytest.mark.scheduled
def test_bedrock_streaming(chat: BedrockChat) -> None:
"""Test streaming tokens from OpenAI."""
full = None
for token in chat.stream("I'm Pickle Rick"):
full = token if full is None else full + token # type: ignore[operator]
assert isinstance(token.content, str)
assert isinstance(cast(AIMessageChunk, full).content, str)
@pytest.mark.scheduled
async def test_bedrock_astream(chat: BedrockChat) -> None:
"""Test streaming tokens from OpenAI."""
async for token in chat.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_bedrock_abatch(chat: BedrockChat) -> None:
"""Test streaming tokens from BedrockChat."""
result = await chat.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_bedrock_abatch_tags(chat: BedrockChat) -> None:
"""Test batch tokens from BedrockChat."""
result = await chat.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
def test_bedrock_batch(chat: BedrockChat) -> None:
"""Test batch tokens from BedrockChat."""
result = chat.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_bedrock_ainvoke(chat: BedrockChat) -> None:
"""Test invoke tokens from BedrockChat."""
result = await chat.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
@pytest.mark.scheduled
def test_bedrock_invoke(chat: BedrockChat) -> None:
"""Test invoke tokens from BedrockChat."""
result = chat.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
assert all([k in result.response_metadata for k in ("usage", "model_id")])
assert result.response_metadata["usage"]["prompt_tokens"] == 13