mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-02 21:58:46 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
76 lines
2.7 KiB
Python
76 lines
2.7 KiB
Python
"""Test FastEmbed embeddings."""
|
|
|
|
import pytest
|
|
|
|
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
)
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
@pytest.mark.parametrize("doc_embed_type", ["default", "passage"])
|
|
@pytest.mark.parametrize("threads", [0, 10])
|
|
def test_fastembed_embedding_documents(
|
|
model_name: str, max_length: int, doc_embed_type: str, threads: int
|
|
) -> None:
|
|
"""Test fastembed embeddings for documents."""
|
|
documents = ["foo bar", "bar foo"]
|
|
embedding = FastEmbedEmbeddings( # type: ignore[call-arg]
|
|
model_name=model_name,
|
|
max_length=max_length,
|
|
doc_embed_type=doc_embed_type, # type: ignore[arg-type]
|
|
threads=threads,
|
|
)
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 2
|
|
assert len(output[0]) == 384
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
)
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
def test_fastembed_embedding_query(model_name: str, max_length: int) -> None:
|
|
"""Test fastembed embeddings for query."""
|
|
document = "foo bar"
|
|
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length) # type: ignore[call-arg]
|
|
output = embedding.embed_query(document)
|
|
assert len(output) == 384
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
)
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
@pytest.mark.parametrize("doc_embed_type", ["default", "passage"])
|
|
@pytest.mark.parametrize("threads", [0, 10])
|
|
async def test_fastembed_async_embedding_documents(
|
|
model_name: str, max_length: int, doc_embed_type: str, threads: int
|
|
) -> None:
|
|
"""Test fastembed embeddings for documents."""
|
|
documents = ["foo bar", "bar foo"]
|
|
embedding = FastEmbedEmbeddings( # type: ignore[call-arg]
|
|
model_name=model_name,
|
|
max_length=max_length,
|
|
doc_embed_type=doc_embed_type, # type: ignore[arg-type]
|
|
threads=threads,
|
|
)
|
|
output = await embedding.aembed_documents(documents)
|
|
assert len(output) == 2
|
|
assert len(output[0]) == 384
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
|
)
|
|
@pytest.mark.parametrize("max_length", [50, 512])
|
|
async def test_fastembed_async_embedding_query(
|
|
model_name: str, max_length: int
|
|
) -> None:
|
|
"""Test fastembed embeddings for query."""
|
|
document = "foo bar"
|
|
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length) # type: ignore[call-arg]
|
|
output = await embedding.aembed_query(document)
|
|
assert len(output) == 384
|