Files
langchain/libs/experimental/langchain_experimental/tot/base.py
Bagatur a0c2281540 infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

145 lines
4.8 KiB
Python

from __future__ import annotations
from textwrap import indent
from typing import Any, Dict, List, Optional, Type
from langchain.base_language import BaseLanguageModel
from langchain.chains.base import Chain
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain_experimental.pydantic_v1 import Extra
from langchain_experimental.tot.checker import ToTChecker
from langchain_experimental.tot.controller import ToTController
from langchain_experimental.tot.memory import ToTDFSMemory
from langchain_experimental.tot.thought import Thought, ThoughtValidity
from langchain_experimental.tot.thought_generation import (
BaseThoughtGenerationStrategy,
ProposePromptStrategy,
)
class ToTChain(Chain):
"""
Chain implementing the Tree of Thought (ToT).
"""
llm: BaseLanguageModel
"""
Language model to use. It must be set to produce different variations for
the same prompt.
"""
checker: ToTChecker
"""ToT Checker to use."""
output_key: str = "response" #: :meta private:
k: int = 10
"""The maximum number of conversation rounds"""
c: int = 3
"""The number of children to explore at each node"""
tot_memory: ToTDFSMemory = ToTDFSMemory()
tot_controller: ToTController = ToTController()
tot_strategy_class: Type[BaseThoughtGenerationStrategy] = ProposePromptStrategy
verbose_llm: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@classmethod
def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> ToTChain:
"""
Create a ToTChain from a language model.
:param llm: The language model to use.
:param kwargs: Additional arguments to pass to the ToTChain constructor.
"""
return cls(llm=llm, **kwargs)
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self.tot_controller.c = self.c
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return ["problem_description"]
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def log_thought(
self,
thought: Thought,
level: int,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> None:
if run_manager:
colors = {
ThoughtValidity.VALID_FINAL: "green",
ThoughtValidity.VALID_INTERMEDIATE: "yellow",
ThoughtValidity.INVALID: "red",
}
text = indent(f"Thought: {thought.text}\n", prefix=" " * level)
run_manager.on_text(
text=text, color=colors[thought.validity], verbose=self.verbose
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
if run_manager:
run_manager.on_text(text="Starting the ToT solve procedure.\n")
problem_description = inputs["problem_description"]
checker_inputs = {"problem_description": problem_description}
thoughts_path: tuple[str, ...] = ()
thought_generator = self.tot_strategy_class( # type: ignore[call-arg]
llm=self.llm, c=self.c, verbose=self.verbose_llm
)
level = 0
for _ in range(self.k):
level = self.tot_memory.level
thought_text = thought_generator.next_thought(
problem_description, thoughts_path, callbacks=_run_manager.get_child()
)
checker_inputs["thoughts"] = thoughts_path + (thought_text,)
thought_validity = self.checker(
checker_inputs, callbacks=_run_manager.get_child()
)["validity"]
thought = Thought(text=thought_text, validity=thought_validity)
if thought.validity == ThoughtValidity.VALID_FINAL:
self.log_thought(thought, level, run_manager)
return {self.output_key: thought.text}
self.tot_memory.store(thought)
self.log_thought(thought, level, run_manager)
thoughts_path = self.tot_controller(self.tot_memory)
return {self.output_key: "No solution found"}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
raise NotImplementedError("Async not implemented yet")
@property
def _chain_type(self) -> str:
return "tot"