mirror of
https://github.com/hwchase17/langchain.git
synced 2025-10-21 17:25:34 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
langchain-anthropic
This package contains the LangChain integration for Anthropic's generative models.
Installation
pip install -U langchain-anthropic
Chat Models
Anthropic recommends using their chat models over text completions.
You can see their recommended models here.
To use, you should have an Anthropic API key configured. Initialize the model as:
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, HumanMessage
model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0, max_tokens=1024)
Define the input message
message = HumanMessage(content="What is the capital of France?")
Generate a response using the model
response = model.invoke([message])
For a more detailed walkthrough see here.
LLMs (Legacy)
You can use the Claude 2 models for text completions.
from langchain_anthropic import AnthropicLLM
model = AnthropicLLM(model="claude-2.1", temperature=0, max_tokens=1024)
response = model.invoke("The best restaurant in San Francisco is: ")