mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-29 12:25:37 +00:00
Thank you for contributing to LangChain! - [x] **PR title**: "package: description" - "community: 1. add new parameter `default_headers` for oci model deployments and oci chat model deployments. 2. updated k parameter in OCIModelDeploymentLLM class." - [x] **PR message**: - **Description:** 1. add new parameters `default_headers` for oci model deployments and oci chat model deployments. 2. updated k parameter in OCIModelDeploymentLLM class. - [x] **Add tests and docs**: 1. unit tests 2. notebook --------- Co-authored-by: Erick Friis <erick@langchain.dev>
1032 lines
36 KiB
Python
1032 lines
36 KiB
Python
# Copyright (c) 2024, Oracle and/or its affiliates.
|
|
|
|
"""Chat model for OCI data science model deployment endpoint."""
|
|
|
|
import importlib
|
|
import json
|
|
import logging
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Sequence,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import AIMessageChunk, BaseMessage, BaseMessageChunk
|
|
from langchain_core.output_parsers import (
|
|
JsonOutputParser,
|
|
PydanticOutputParser,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
from pydantic import BaseModel, Field, model_validator
|
|
|
|
from langchain_community.llms.oci_data_science_model_deployment_endpoint import (
|
|
DEFAULT_MODEL_NAME,
|
|
BaseOCIModelDeployment,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
DEFAULT_INFERENCE_ENDPOINT_CHAT = "/v1/chat/completions"
|
|
|
|
|
|
def _is_pydantic_class(obj: Any) -> bool:
|
|
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
|
|
|
|
|
class ChatOCIModelDeployment(BaseChatModel, BaseOCIModelDeployment):
|
|
"""OCI Data Science Model Deployment chat model integration.
|
|
|
|
Prerequisite
|
|
The OCI Model Deployment plugins are installable only on
|
|
python version 3.9 and above. If you're working inside the notebook,
|
|
try installing the python 3.10 based conda pack and running the
|
|
following setup.
|
|
|
|
|
|
Setup:
|
|
Install ``oracle-ads`` and ``langchain-openai``.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U oracle-ads langchain-openai
|
|
|
|
Use `ads.set_auth()` to configure authentication.
|
|
For example, to use OCI resource_principal for authentication:
|
|
|
|
.. code-block:: python
|
|
|
|
import ads
|
|
ads.set_auth("resource_principal")
|
|
|
|
For more details on authentication, see:
|
|
https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
|
|
|
|
Make sure to have the required policies to access the OCI Data
|
|
Science Model Deployment endpoint. See:
|
|
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm
|
|
|
|
|
|
Key init args - completion params:
|
|
endpoint: str
|
|
The OCI model deployment endpoint.
|
|
temperature: float
|
|
Sampling temperature.
|
|
max_tokens: Optional[int]
|
|
Max number of tokens to generate.
|
|
|
|
Key init args — client params:
|
|
auth: dict
|
|
ADS auth dictionary for OCI authentication.
|
|
default_headers: Optional[Dict]
|
|
The headers to be added to the Model Deployment request.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatOCIModelDeployment
|
|
|
|
chat = ChatOCIModelDeployment(
|
|
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict",
|
|
model="odsc-llm", # this is the default model name if deployed with AQUA
|
|
streaming=True,
|
|
max_retries=3,
|
|
model_kwargs={
|
|
"max_token": 512,
|
|
"temperature": 0.2,
|
|
# other model parameters ...
|
|
},
|
|
default_headers={
|
|
"route": "/v1/chat/completions",
|
|
# other request headers ...
|
|
},
|
|
)
|
|
|
|
Invocation:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
("system", "Translate the user sentence to French."),
|
|
("human", "Hello World!"),
|
|
]
|
|
chat.invoke(messages)
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessage(
|
|
content='Bonjour le monde!',
|
|
response_metadata={
|
|
'token_usage': {
|
|
'prompt_tokens': 40,
|
|
'total_tokens': 50,
|
|
'completion_tokens': 10
|
|
},
|
|
'model_name': 'odsc-llm',
|
|
'system_fingerprint': '',
|
|
'finish_reason': 'stop'
|
|
},
|
|
id='run-cbed62da-e1b3-4abd-9df3-ec89d69ca012-0'
|
|
)
|
|
|
|
Streaming:
|
|
.. code-block:: python
|
|
|
|
for chunk in chat.stream(messages):
|
|
print(chunk)
|
|
|
|
.. code-block:: python
|
|
|
|
content='' id='run-02c6-c43f-42de'
|
|
content='\n' id='run-02c6-c43f-42de'
|
|
content='B' id='run-02c6-c43f-42de'
|
|
content='on' id='run-02c6-c43f-42de'
|
|
content='j' id='run-02c6-c43f-42de'
|
|
content='our' id='run-02c6-c43f-42de'
|
|
content=' le' id='run-02c6-c43f-42de'
|
|
content=' monde' id='run-02c6-c43f-42de'
|
|
content='!' id='run-02c6-c43f-42de'
|
|
content='' response_metadata={'finish_reason': 'stop'} id='run-02c6-c43f-42de'
|
|
|
|
Async:
|
|
.. code-block:: python
|
|
|
|
await chat.ainvoke(messages)
|
|
|
|
# stream:
|
|
# async for chunk in (await chat.astream(messages))
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessage(
|
|
content='Bonjour le monde!',
|
|
response_metadata={'finish_reason': 'stop'},
|
|
id='run-8657a105-96b7-4bb6-b98e-b69ca420e5d1-0'
|
|
)
|
|
|
|
Structured output:
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
from pydantic import BaseModel, Field
|
|
|
|
class Joke(BaseModel):
|
|
setup: str = Field(description="The setup of the joke")
|
|
punchline: str = Field(description="The punchline to the joke")
|
|
|
|
structured_llm = chat.with_structured_output(Joke, method="json_mode")
|
|
structured_llm.invoke(
|
|
"Tell me a joke about cats, "
|
|
"respond in JSON with `setup` and `punchline` keys"
|
|
)
|
|
|
|
.. code-block:: python
|
|
|
|
Joke(
|
|
setup='Why did the cat get stuck in the tree?',
|
|
punchline='Because it was chasing its tail!'
|
|
)
|
|
|
|
See ``ChatOCIModelDeployment.with_structured_output()`` for more.
|
|
|
|
Customized Usage:
|
|
You can inherit from base class and overwrite the `_process_response`,
|
|
`_process_stream_response`, `_construct_json_body` for customized usage.
|
|
|
|
.. code-block:: python
|
|
|
|
class MyChatModel(ChatOCIModelDeployment):
|
|
def _process_stream_response(self, response_json: dict) -> ChatGenerationChunk:
|
|
print("My customized streaming result handler.")
|
|
return GenerationChunk(...)
|
|
|
|
def _process_response(self, response_json:dict) -> ChatResult:
|
|
print("My customized output handler.")
|
|
return ChatResult(...)
|
|
|
|
def _construct_json_body(self, messages: list, params: dict) -> dict:
|
|
print("My customized payload handler.")
|
|
return {
|
|
"messages": messages,
|
|
**params,
|
|
}
|
|
|
|
chat = MyChatModel(
|
|
endpoint=f"https://modeldeployment.<region>.oci.customer-oci.com/{ocid}/predict",
|
|
model="odsc-llm",
|
|
}
|
|
|
|
chat.invoke("tell me a joke")
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
ai_msg = chat.invoke(messages)
|
|
ai_msg.response_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{
|
|
'token_usage': {
|
|
'prompt_tokens': 40,
|
|
'total_tokens': 50,
|
|
'completion_tokens': 10
|
|
},
|
|
'model_name': 'odsc-llm',
|
|
'system_fingerprint': '',
|
|
'finish_reason': 'stop'
|
|
}
|
|
|
|
""" # noqa: E501
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
model: str = DEFAULT_MODEL_NAME
|
|
"""The name of the model."""
|
|
|
|
stop: Optional[List[str]] = None
|
|
"""Stop words to use when generating. Model output is cut off
|
|
at the first occurrence of any of these substrings."""
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_openai(cls, values: Any) -> Any:
|
|
"""Checks if langchain_openai is installed."""
|
|
if not importlib.util.find_spec("langchain_openai"):
|
|
raise ImportError(
|
|
"Could not import langchain_openai package. "
|
|
"Please install it with `pip install langchain_openai`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "oci_model_depolyment_chat_endpoint"
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"endpoint": self.endpoint, "model_kwargs": _model_kwargs},
|
|
**self._default_params,
|
|
}
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters."""
|
|
return {
|
|
"model": self.model,
|
|
"stop": self.stop,
|
|
"stream": self.streaming,
|
|
}
|
|
|
|
def _headers(
|
|
self, is_async: Optional[bool] = False, body: Optional[dict] = None
|
|
) -> Dict:
|
|
"""Construct and return the headers for a request.
|
|
|
|
Args:
|
|
is_async (bool, optional): Indicates if the request is asynchronous.
|
|
Defaults to `False`.
|
|
body (optional): The request body to be included in the headers if
|
|
the request is asynchronous.
|
|
|
|
Returns:
|
|
Dict: A dictionary containing the appropriate headers for the request.
|
|
"""
|
|
return {
|
|
"route": DEFAULT_INFERENCE_ENDPOINT_CHAT,
|
|
**super()._headers(is_async=is_async, body=body),
|
|
}
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Call out to an OCI Model Deployment Online endpoint.
|
|
|
|
Args:
|
|
messages: The messages in the conversation with the chat model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
LangChain ChatResult
|
|
|
|
Raises:
|
|
RuntimeError:
|
|
Raise when invoking endpoint fails.
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
(
|
|
"system",
|
|
"You are a helpful assistant that translates English to French. Translate the user sentence.",
|
|
),
|
|
("human", "Hello World!"),
|
|
]
|
|
|
|
response = chat.invoke(messages)
|
|
""" # noqa: E501
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
requests_kwargs = kwargs.pop("requests_kwargs", {})
|
|
params = self._invocation_params(stop, **kwargs)
|
|
body = self._construct_json_body(messages, params)
|
|
res = self.completion_with_retry(
|
|
data=body, run_manager=run_manager, **requests_kwargs
|
|
)
|
|
return self._process_response(res.json())
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
"""Stream OCI Data Science Model Deployment endpoint on given messages.
|
|
|
|
Args:
|
|
messages (List[BaseMessage]):
|
|
The messagaes to pass into the model.
|
|
stop (List[str], Optional):
|
|
List of stop words to use when generating.
|
|
kwargs:
|
|
requests_kwargs:
|
|
Additional ``**kwargs`` to pass to requests.post
|
|
|
|
Returns:
|
|
An iterator of ChatGenerationChunk.
|
|
|
|
Raises:
|
|
RuntimeError:
|
|
Raise when invoking endpoint fails.
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
(
|
|
"system",
|
|
"You are a helpful assistant that translates English to French. Translate the user sentence.",
|
|
),
|
|
("human", "Hello World!"),
|
|
]
|
|
|
|
chunk_iter = chat.stream(messages)
|
|
|
|
""" # noqa: E501
|
|
requests_kwargs = kwargs.pop("requests_kwargs", {})
|
|
self.streaming = True
|
|
params = self._invocation_params(stop, **kwargs)
|
|
body = self._construct_json_body(messages, params) # request json body
|
|
|
|
response = self.completion_with_retry(
|
|
data=body, run_manager=run_manager, stream=True, **requests_kwargs
|
|
)
|
|
default_chunk_class = AIMessageChunk
|
|
for line in self._parse_stream(response.iter_lines()):
|
|
chunk = self._handle_sse_line(line, default_chunk_class)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Asynchronously call out to OCI Data Science Model Deployment
|
|
endpoint on given messages.
|
|
|
|
Args:
|
|
messages (List[BaseMessage]):
|
|
The messagaes to pass into the model.
|
|
stop (List[str], Optional):
|
|
List of stop words to use when generating.
|
|
kwargs:
|
|
requests_kwargs:
|
|
Additional ``**kwargs`` to pass to requests.post
|
|
|
|
Returns:
|
|
LangChain ChatResult.
|
|
|
|
Raises:
|
|
ValueError:
|
|
Raise when invoking endpoint fails.
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
(
|
|
"system",
|
|
"You are a helpful assistant that translates English to French. Translate the user sentence.",
|
|
),
|
|
("human", "I love programming."),
|
|
]
|
|
|
|
resp = await chat.ainvoke(messages)
|
|
|
|
""" # noqa: E501
|
|
if self.streaming:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
requests_kwargs = kwargs.pop("requests_kwargs", {})
|
|
params = self._invocation_params(stop, **kwargs)
|
|
body = self._construct_json_body(messages, params)
|
|
response = await self.acompletion_with_retry(
|
|
data=body,
|
|
run_manager=run_manager,
|
|
**requests_kwargs,
|
|
)
|
|
return self._process_response(response)
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
"""Asynchronously streaming OCI Data Science Model Deployment
|
|
endpoint on given messages.
|
|
|
|
Args:
|
|
messages (List[BaseMessage]):
|
|
The messagaes to pass into the model.
|
|
stop (List[str], Optional):
|
|
List of stop words to use when generating.
|
|
kwargs:
|
|
requests_kwargs:
|
|
Additional ``**kwargs`` to pass to requests.post
|
|
|
|
Returns:
|
|
An Asynciterator of ChatGenerationChunk.
|
|
|
|
Raises:
|
|
ValueError:
|
|
Raise when invoking endpoint fails.
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
(
|
|
"system",
|
|
"You are a helpful assistant that translates English to French. Translate the user sentence.",
|
|
),
|
|
("human", "I love programming."),
|
|
]
|
|
|
|
chunk_iter = await chat.astream(messages)
|
|
|
|
""" # noqa: E501
|
|
requests_kwargs = kwargs.pop("requests_kwargs", {})
|
|
self.streaming = True
|
|
params = self._invocation_params(stop, **kwargs)
|
|
body = self._construct_json_body(messages, params) # request json body
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
async for line in await self.acompletion_with_retry(
|
|
data=body, run_manager=run_manager, stream=True, **requests_kwargs
|
|
):
|
|
chunk = self._handle_sse_line(line, default_chunk_class)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
|
*,
|
|
method: Literal["json_mode"] = "json_mode",
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the OpenAI function-calling spec.
|
|
method: The method for steering model generation, currently only support
|
|
for "json_mode". If "json_mode" then JSON mode will be used. Note that
|
|
if using "json_mode" then you must include instructions for formatting
|
|
the output into the desired schema into the model call.
|
|
include_raw: If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = _is_pydantic_class(schema)
|
|
if method == "json_mode":
|
|
llm = self.bind(response_format={"type": "json_object"})
|
|
output_parser = (
|
|
PydanticOutputParser(pydantic_object=schema) # type: ignore[type-var, arg-type]
|
|
if is_pydantic_schema
|
|
else JsonOutputParser()
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized method argument. Expected `json_mode`."
|
|
f"Received: `{method}`."
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) -> dict:
|
|
"""Combines the invocation parameters with default parameters."""
|
|
params = self._default_params
|
|
_model_kwargs = self.model_kwargs or {}
|
|
params["stop"] = stop or params.get("stop", [])
|
|
return {**params, **_model_kwargs, **kwargs}
|
|
|
|
def _handle_sse_line(
|
|
self, line: str, default_chunk_cls: Type[BaseMessageChunk] = AIMessageChunk
|
|
) -> ChatGenerationChunk:
|
|
"""Handle a single Server-Sent Events (SSE) line and process it into
|
|
a chat generation chunk.
|
|
|
|
Args:
|
|
line (str): A single line from the SSE stream in string format.
|
|
default_chunk_cls (AIMessageChunk): The default class for message
|
|
chunks to be used during the processing of the stream response.
|
|
|
|
Returns:
|
|
ChatGenerationChunk: The processed chat generation chunk. If an error
|
|
occurs, an empty `ChatGenerationChunk` is returned.
|
|
"""
|
|
try:
|
|
obj = json.loads(line)
|
|
return self._process_stream_response(obj, default_chunk_cls)
|
|
except Exception as e:
|
|
logger.debug(f"Error occurs when processing line={line}: {str(e)}")
|
|
return ChatGenerationChunk(message=AIMessageChunk(content=""))
|
|
|
|
def _construct_json_body(self, messages: list, params: dict) -> dict:
|
|
"""Constructs the request body as a dictionary (JSON).
|
|
|
|
Args:
|
|
messages (list): A list of message objects to be included in the
|
|
request body.
|
|
params (dict): A dictionary of additional parameters to be included
|
|
in the request body.
|
|
|
|
Returns:
|
|
dict: A dictionary representing the JSON request body, including
|
|
converted messages and additional parameters.
|
|
|
|
"""
|
|
from langchain_openai.chat_models.base import _convert_message_to_dict
|
|
|
|
return {
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
**params,
|
|
}
|
|
|
|
def _process_stream_response(
|
|
self,
|
|
response_json: dict,
|
|
default_chunk_cls: Type[BaseMessageChunk] = AIMessageChunk,
|
|
) -> ChatGenerationChunk:
|
|
"""Formats streaming response in OpenAI spec.
|
|
|
|
Args:
|
|
response_json (dict): The JSON response from the streaming endpoint.
|
|
default_chunk_cls (type, optional): The default class to use for
|
|
creating message chunks. Defaults to `AIMessageChunk`.
|
|
|
|
Returns:
|
|
ChatGenerationChunk: An object containing the processed message
|
|
chunk and any relevant generation information such as finish
|
|
reason and usage.
|
|
|
|
Raises:
|
|
ValueError: If the response JSON is not well-formed or does not
|
|
contain the expected structure.
|
|
"""
|
|
from langchain_openai.chat_models.base import _convert_delta_to_message_chunk
|
|
|
|
try:
|
|
choice = response_json["choices"][0]
|
|
if not isinstance(choice, dict):
|
|
raise TypeError("Endpoint response is not well formed.")
|
|
except (KeyError, IndexError, TypeError) as e:
|
|
raise ValueError(
|
|
"Error while formatting response payload for chat model of type"
|
|
) from e
|
|
|
|
chunk = _convert_delta_to_message_chunk(choice["delta"], default_chunk_cls)
|
|
default_chunk_cls = chunk.__class__
|
|
finish_reason = choice.get("finish_reason")
|
|
usage = choice.get("usage")
|
|
gen_info = {}
|
|
if finish_reason is not None:
|
|
gen_info.update({"finish_reason": finish_reason})
|
|
if usage is not None:
|
|
gen_info.update({"usage": usage})
|
|
|
|
return ChatGenerationChunk(
|
|
message=chunk, generation_info=gen_info if gen_info else None
|
|
)
|
|
|
|
def _process_response(self, response_json: dict) -> ChatResult:
|
|
"""Formats response in OpenAI spec.
|
|
|
|
Args:
|
|
response_json (dict): The JSON response from the chat model endpoint.
|
|
|
|
Returns:
|
|
ChatResult: An object containing the list of `ChatGeneration` objects
|
|
and additional LLM output information.
|
|
|
|
Raises:
|
|
ValueError: If the response JSON is not well-formed or does not
|
|
contain the expected structure.
|
|
|
|
"""
|
|
from langchain_openai.chat_models.base import _convert_dict_to_message
|
|
|
|
generations = []
|
|
try:
|
|
choices = response_json["choices"]
|
|
if not isinstance(choices, list):
|
|
raise TypeError("Endpoint response is not well formed.")
|
|
except (KeyError, TypeError) as e:
|
|
raise ValueError(
|
|
"Error while formatting response payload for chat model of type"
|
|
) from e
|
|
|
|
for choice in choices:
|
|
message = _convert_dict_to_message(choice["message"])
|
|
generation_info = {"finish_reason": choice.get("finish_reason")}
|
|
if "logprobs" in choice:
|
|
generation_info["logprobs"] = choice["logprobs"]
|
|
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=generation_info,
|
|
)
|
|
generations.append(gen)
|
|
|
|
token_usage = response_json.get("usage", {})
|
|
llm_output = {
|
|
"token_usage": token_usage,
|
|
"model_name": self.model,
|
|
"system_fingerprint": response_json.get("system_fingerprint", ""),
|
|
}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
return super().bind(tools=formatted_tools, **kwargs)
|
|
|
|
|
|
class ChatOCIModelDeploymentVLLM(ChatOCIModelDeployment):
|
|
"""OCI large language chat models deployed with vLLM.
|
|
|
|
To use, you must provide the model HTTP endpoint from your deployed
|
|
model, e.g. https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict.
|
|
|
|
To authenticate, `oracle-ads` has been used to automatically load
|
|
credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
|
|
|
|
Make sure to have the required policies to access the OCI Data
|
|
Science Model Deployment endpoint. See:
|
|
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatOCIModelDeploymentVLLM
|
|
|
|
chat = ChatOCIModelDeploymentVLLM(
|
|
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict",
|
|
frequency_penalty=0.1,
|
|
max_tokens=512,
|
|
temperature=0.2,
|
|
top_p=1.0,
|
|
# other model parameters...
|
|
)
|
|
|
|
""" # noqa: E501
|
|
|
|
frequency_penalty: float = 0.0
|
|
"""Penalizes repeated tokens according to frequency. Between 0 and 1."""
|
|
|
|
logit_bias: Optional[Dict[str, float]] = None
|
|
"""Adjust the probability of specific tokens being generated."""
|
|
|
|
max_tokens: Optional[int] = 256
|
|
"""The maximum number of tokens to generate in the completion."""
|
|
|
|
n: int = 1
|
|
"""Number of output sequences to return for the given prompt."""
|
|
|
|
presence_penalty: float = 0.0
|
|
"""Penalizes repeated tokens. Between 0 and 1."""
|
|
|
|
temperature: float = 0.2
|
|
"""What sampling temperature to use."""
|
|
|
|
top_p: float = 1.0
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
best_of: Optional[int] = None
|
|
"""Generates best_of completions server-side and returns the "best"
|
|
(the one with the highest log probability per token).
|
|
"""
|
|
|
|
use_beam_search: Optional[bool] = False
|
|
"""Whether to use beam search instead of sampling."""
|
|
|
|
top_k: Optional[int] = -1
|
|
"""Number of most likely tokens to consider at each step."""
|
|
|
|
min_p: Optional[float] = 0.0
|
|
"""Float that represents the minimum probability for a token to be considered.
|
|
Must be in [0,1]. 0 to disable this."""
|
|
|
|
repetition_penalty: Optional[float] = 1.0
|
|
"""Float that penalizes new tokens based on their frequency in the
|
|
generated text. Values > 1 encourage the model to use new tokens."""
|
|
|
|
length_penalty: Optional[float] = 1.0
|
|
"""Float that penalizes sequences based on their length. Used only
|
|
when `use_beam_search` is True."""
|
|
|
|
early_stopping: Optional[bool] = False
|
|
"""Controls the stopping condition for beam search. It accepts the
|
|
following values: `True`, where the generation stops as soon as there
|
|
are `best_of` complete candidates; `False`, where a heuristic is applied
|
|
to the generation stops when it is very unlikely to find better candidates;
|
|
`never`, where the beam search procedure only stops where there cannot be
|
|
better candidates (canonical beam search algorithm)."""
|
|
|
|
ignore_eos: Optional[bool] = False
|
|
"""Whether to ignore the EOS token and continue generating tokens after
|
|
the EOS token is generated."""
|
|
|
|
min_tokens: Optional[int] = 0
|
|
"""Minimum number of tokens to generate per output sequence before
|
|
EOS or stop_token_ids can be generated"""
|
|
|
|
stop_token_ids: Optional[List[int]] = None
|
|
"""List of tokens that stop the generation when they are generated.
|
|
The returned output will contain the stop tokens unless the stop tokens
|
|
are special tokens."""
|
|
|
|
skip_special_tokens: Optional[bool] = True
|
|
"""Whether to skip special tokens in the output. Defaults to True."""
|
|
|
|
spaces_between_special_tokens: Optional[bool] = True
|
|
"""Whether to add spaces between special tokens in the output.
|
|
Defaults to True."""
|
|
|
|
tool_choice: Optional[str] = None
|
|
"""Whether to use tool calling.
|
|
Defaults to None, tool calling is disabled.
|
|
Tool calling requires model support and the vLLM to be configured
|
|
with `--tool-call-parser`.
|
|
Set this to `auto` for the model to make tool calls automatically.
|
|
Set this to `required` to force the model to always call one or more tools.
|
|
"""
|
|
|
|
chat_template: Optional[str] = None
|
|
"""Use customized chat template.
|
|
Defaults to None. The chat template from the tokenizer will be used.
|
|
"""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "oci_model_depolyment_chat_endpoint_vllm"
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters."""
|
|
params = {
|
|
"model": self.model,
|
|
"stop": self.stop,
|
|
"stream": self.streaming,
|
|
}
|
|
for attr_name in self._get_model_params():
|
|
try:
|
|
value = getattr(self, attr_name)
|
|
if value is not None:
|
|
params.update({attr_name: value})
|
|
except Exception:
|
|
pass
|
|
|
|
return params
|
|
|
|
def _get_model_params(self) -> List[str]:
|
|
"""Gets the name of model parameters."""
|
|
return [
|
|
"best_of",
|
|
"early_stopping",
|
|
"frequency_penalty",
|
|
"ignore_eos",
|
|
"length_penalty",
|
|
"logit_bias",
|
|
"logprobs",
|
|
"max_tokens",
|
|
"min_p",
|
|
"min_tokens",
|
|
"n",
|
|
"presence_penalty",
|
|
"repetition_penalty",
|
|
"skip_special_tokens",
|
|
"spaces_between_special_tokens",
|
|
"stop_token_ids",
|
|
"temperature",
|
|
"top_k",
|
|
"top_p",
|
|
"use_beam_search",
|
|
"tool_choice",
|
|
"chat_template",
|
|
]
|
|
|
|
|
|
class ChatOCIModelDeploymentTGI(ChatOCIModelDeployment):
|
|
"""OCI large language chat models deployed with Text Generation Inference.
|
|
|
|
To use, you must provide the model HTTP endpoint from your deployed
|
|
model, e.g. https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict.
|
|
|
|
To authenticate, `oracle-ads` has been used to automatically load
|
|
credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
|
|
|
|
Make sure to have the required policies to access the OCI Data
|
|
Science Model Deployment endpoint. See:
|
|
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatOCIModelDeploymentTGI
|
|
|
|
chat = ChatOCIModelDeploymentTGI(
|
|
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict",
|
|
max_token=512,
|
|
temperature=0.2,
|
|
frequency_penalty=0.1,
|
|
seed=42,
|
|
# other model parameters...
|
|
)
|
|
|
|
""" # noqa: E501
|
|
|
|
frequency_penalty: Optional[float] = None
|
|
"""Penalizes repeated tokens according to frequency. Between 0 and 1."""
|
|
|
|
logit_bias: Optional[Dict[str, float]] = None
|
|
"""Adjust the probability of specific tokens being generated."""
|
|
|
|
logprobs: Optional[bool] = None
|
|
"""Whether to return log probabilities of the output tokens or not."""
|
|
|
|
max_tokens: int = 256
|
|
"""The maximum number of tokens to generate in the completion."""
|
|
|
|
n: int = 1
|
|
"""Number of output sequences to return for the given prompt."""
|
|
|
|
presence_penalty: Optional[float] = None
|
|
"""Penalizes repeated tokens. Between 0 and 1."""
|
|
|
|
seed: Optional[int] = None
|
|
"""To sample deterministically,"""
|
|
|
|
temperature: float = 0.2
|
|
"""What sampling temperature to use."""
|
|
|
|
top_p: Optional[float] = None
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
top_logprobs: Optional[int] = None
|
|
"""An integer between 0 and 5 specifying the number of most
|
|
likely tokens to return at each token position, each with an
|
|
associated log probability. logprobs must be set to true if
|
|
this parameter is used."""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "oci_model_depolyment_chat_endpoint_tgi"
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters."""
|
|
params = {
|
|
"model": self.model,
|
|
"stop": self.stop,
|
|
"stream": self.streaming,
|
|
}
|
|
for attr_name in self._get_model_params():
|
|
try:
|
|
value = getattr(self, attr_name)
|
|
if value is not None:
|
|
params.update({attr_name: value})
|
|
except Exception:
|
|
pass
|
|
|
|
return params
|
|
|
|
def _get_model_params(self) -> List[str]:
|
|
"""Gets the name of model parameters."""
|
|
return [
|
|
"frequency_penalty",
|
|
"logit_bias",
|
|
"logprobs",
|
|
"max_tokens",
|
|
"n",
|
|
"presence_penalty",
|
|
"seed",
|
|
"temperature",
|
|
"top_k",
|
|
"top_p",
|
|
"top_logprobs",
|
|
]
|