mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-29 04:16:02 +00:00
159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
"""OctoAI Endpoints chat wrapper. Relies heavily on ChatOpenAI."""
|
|
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Literal,
|
|
Optional,
|
|
Sequence,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.messages import BaseMessage
|
|
from langchain_core.runnables import Runnable
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
from pydantic import Field, SecretStr
|
|
|
|
from langchain_community.chat_models.openai import ChatOpenAI
|
|
from langchain_community.utils.openai import is_openai_v1
|
|
|
|
DEFAULT_API_BASE = "https://text.octoai.run/v1/"
|
|
DEFAULT_MODEL = "llama-2-13b-chat"
|
|
|
|
|
|
class ChatOctoAI(ChatOpenAI):
|
|
"""OctoAI Chat large language models.
|
|
|
|
See https://octo.ai/ for information about OctoAI.
|
|
|
|
To use, you should have the ``openai`` python package installed and the
|
|
environment variable ``OCTOAI_API_TOKEN`` set with your API token.
|
|
Alternatively, you can use the octoai_api_token keyword argument.
|
|
|
|
Any parameters that are valid to be passed to the `openai.create` call can be passed
|
|
in, even if not explicitly saved on this class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatOctoAI
|
|
chat = ChatOctoAI(model_name="mixtral-8x7b-instruct")
|
|
"""
|
|
|
|
octoai_api_base: str = Field(default=DEFAULT_API_BASE)
|
|
octoai_api_token: SecretStr = Field(default=SecretStr(""), alias="api_key")
|
|
model_name: str = Field(default=DEFAULT_MODEL, alias="model")
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "octoai-chat"
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"octoai_api_token": "OCTOAI_API_TOKEN"}
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
return False
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["octoai_api_base"] = get_from_dict_or_env(
|
|
values,
|
|
"octoai_api_base",
|
|
"OCTOAI_API_BASE",
|
|
default=DEFAULT_API_BASE,
|
|
)
|
|
values["octoai_api_token"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "octoai_api_token", "OCTOAI_API_TOKEN")
|
|
)
|
|
values["model_name"] = get_from_dict_or_env(
|
|
values,
|
|
"model_name",
|
|
"MODEL_NAME",
|
|
default=DEFAULT_MODEL,
|
|
)
|
|
|
|
try:
|
|
import openai
|
|
|
|
if is_openai_v1():
|
|
client_params = {
|
|
"api_key": values["octoai_api_token"].get_secret_value(),
|
|
"base_url": values["octoai_api_base"],
|
|
}
|
|
if not values.get("client"):
|
|
values["client"] = openai.OpenAI(**client_params).chat.completions
|
|
if not values.get("async_client"):
|
|
values["async_client"] = openai.AsyncOpenAI(
|
|
**client_params
|
|
).chat.completions
|
|
else:
|
|
values["openai_api_base"] = values["octoai_api_base"]
|
|
values["openai_api_key"] = values["octoai_api_token"].get_secret_value()
|
|
values["client"] = openai.ChatCompletion # type: ignore[attr-defined]
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import openai python package. "
|
|
"Please install it with `pip install openai`."
|
|
)
|
|
|
|
return values
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]],
|
|
*,
|
|
tool_choice: Optional[
|
|
Union[dict, str, Literal["auto", "none", "required", "any"], bool]
|
|
] = None,
|
|
strict: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Imitating bind_tool method from langchain_openai.ChatOpenAI"""
|
|
|
|
formatted_tools = [
|
|
convert_to_openai_tool(tool, strict=strict) for tool in tools
|
|
]
|
|
if tool_choice:
|
|
if isinstance(tool_choice, str):
|
|
# tool_choice is a tool/function name
|
|
if tool_choice not in ("auto", "none", "any", "required"):
|
|
tool_choice = {
|
|
"type": "function",
|
|
"function": {"name": tool_choice},
|
|
}
|
|
# 'any' is not natively supported by OpenAI API.
|
|
# We support 'any' since other models use this instead of 'required'.
|
|
if tool_choice == "any":
|
|
tool_choice = "required"
|
|
elif isinstance(tool_choice, bool):
|
|
tool_choice = "required"
|
|
elif isinstance(tool_choice, dict):
|
|
tool_names = [
|
|
formatted_tool["function"]["name"]
|
|
for formatted_tool in formatted_tools
|
|
]
|
|
if not any(
|
|
tool_name == tool_choice["function"]["name"]
|
|
for tool_name in tool_names
|
|
):
|
|
raise ValueError(
|
|
f"Tool choice {tool_choice} was specified, but the only "
|
|
f"provided tools were {tool_names}."
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized tool_choice type. Expected str, bool or dict. "
|
|
f"Received: {tool_choice}"
|
|
)
|
|
kwargs["tool_choice"] = tool_choice
|
|
return super().bind(tools=formatted_tools, **kwargs)
|