mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-28 03:51:50 +00:00
We are implementing a token-counting callback handler in `langchain-core` that is intended to work with all chat models supporting usage metadata. The callback will aggregate usage metadata by model. This requires responses to include the model name in its metadata. To support this, if a model `returns_usage_metadata`, we check that it includes a string model name in its `response_metadata` in the `"model_name"` key. More context: https://github.com/langchain-ai/langchain/pull/30487
1076 lines
43 KiB
Python
1076 lines
43 KiB
Python
"""Fireworks chat wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
TypedDict,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from fireworks.client import AsyncFireworks, Fireworks # type: ignore
|
|
from langchain_core._api import deprecated
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
LangSmithParams,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
FunctionMessage,
|
|
FunctionMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
InvalidToolCall,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolCall,
|
|
ToolMessage,
|
|
ToolMessageChunk,
|
|
)
|
|
from langchain_core.messages.tool import (
|
|
ToolCallChunk,
|
|
)
|
|
from langchain_core.messages.tool import (
|
|
tool_call_chunk as create_tool_call_chunk,
|
|
)
|
|
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
make_invalid_tool_call,
|
|
parse_tool_call,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import (
|
|
get_pydantic_field_names,
|
|
)
|
|
from langchain_core.utils.function_calling import (
|
|
convert_to_json_schema,
|
|
convert_to_openai_function,
|
|
convert_to_openai_tool,
|
|
)
|
|
from langchain_core.utils.pydantic import is_basemodel_subclass
|
|
from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env
|
|
from pydantic import (
|
|
BaseModel,
|
|
ConfigDict,
|
|
Field,
|
|
SecretStr,
|
|
model_validator,
|
|
)
|
|
from typing_extensions import Self
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
"""Convert a dictionary to a LangChain message.
|
|
|
|
Args:
|
|
_dict: The dictionary.
|
|
|
|
Returns:
|
|
The LangChain message.
|
|
"""
|
|
role = _dict.get("role")
|
|
if role == "user":
|
|
return HumanMessage(content=_dict.get("content", ""))
|
|
elif role == "assistant":
|
|
# Fix for azure
|
|
# Also Fireworks returns None for tool invocations
|
|
content = _dict.get("content", "") or ""
|
|
additional_kwargs: Dict = {}
|
|
if function_call := _dict.get("function_call"):
|
|
additional_kwargs["function_call"] = dict(function_call)
|
|
tool_calls = []
|
|
invalid_tool_calls = []
|
|
if raw_tool_calls := _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
for raw_tool_call in raw_tool_calls:
|
|
try:
|
|
tool_calls.append(parse_tool_call(raw_tool_call, return_id=True))
|
|
except Exception as e:
|
|
invalid_tool_calls.append(
|
|
dict(make_invalid_tool_call(raw_tool_call, str(e)))
|
|
)
|
|
return AIMessage(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_calls=tool_calls,
|
|
invalid_tool_calls=invalid_tool_calls,
|
|
)
|
|
elif role == "system":
|
|
return SystemMessage(content=_dict.get("content", ""))
|
|
elif role == "function":
|
|
return FunctionMessage(
|
|
content=_dict.get("content", ""), name=_dict.get("name", "")
|
|
)
|
|
elif role == "tool":
|
|
additional_kwargs = {}
|
|
if "name" in _dict:
|
|
additional_kwargs["name"] = _dict["name"]
|
|
return ToolMessage(
|
|
content=_dict.get("content", ""),
|
|
tool_call_id=_dict.get("tool_call_id", ""),
|
|
additional_kwargs=additional_kwargs,
|
|
)
|
|
else:
|
|
return ChatMessage(content=_dict.get("content", ""), role=role or "")
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
"""Convert a LangChain message to a dictionary.
|
|
|
|
Args:
|
|
message: The LangChain message.
|
|
|
|
Returns:
|
|
The dictionary.
|
|
"""
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
if "function_call" in message.additional_kwargs:
|
|
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
|
# If function call only, content is None not empty string
|
|
if message_dict["content"] == "":
|
|
message_dict["content"] = None
|
|
if message.tool_calls or message.invalid_tool_calls:
|
|
message_dict["tool_calls"] = [
|
|
_lc_tool_call_to_fireworks_tool_call(tc) for tc in message.tool_calls
|
|
] + [
|
|
_lc_invalid_tool_call_to_fireworks_tool_call(tc)
|
|
for tc in message.invalid_tool_calls
|
|
]
|
|
elif "tool_calls" in message.additional_kwargs:
|
|
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
|
|
# If tool calls only, content is None not empty string
|
|
if "tool_calls" in message_dict and message_dict["content"] == "":
|
|
message_dict["content"] = None
|
|
else:
|
|
pass
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, FunctionMessage):
|
|
message_dict = {
|
|
"role": "function",
|
|
"content": message.content,
|
|
"name": message.name,
|
|
}
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict = {
|
|
"role": "tool",
|
|
"content": message.content,
|
|
"tool_call_id": message.tool_call_id,
|
|
}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
if "name" in message.additional_kwargs:
|
|
message_dict["name"] = message.additional_kwargs["name"]
|
|
return message_dict
|
|
|
|
|
|
def _convert_chunk_to_message_chunk(
|
|
chunk: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
choice = chunk["choices"][0]
|
|
_dict = choice["delta"]
|
|
role = cast(str, _dict.get("role"))
|
|
content = cast(str, _dict.get("content") or "")
|
|
additional_kwargs: Dict = {}
|
|
tool_call_chunks: List[ToolCallChunk] = []
|
|
if _dict.get("function_call"):
|
|
function_call = dict(_dict["function_call"])
|
|
if "name" in function_call and function_call["name"] is None:
|
|
function_call["name"] = ""
|
|
additional_kwargs["function_call"] = function_call
|
|
if raw_tool_calls := _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
for rtc in raw_tool_calls:
|
|
try:
|
|
tool_call_chunks.append(
|
|
create_tool_call_chunk(
|
|
name=rtc["function"].get("name"),
|
|
args=rtc["function"].get("arguments"),
|
|
id=rtc.get("id"),
|
|
index=rtc.get("index"),
|
|
)
|
|
)
|
|
except KeyError:
|
|
pass
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
if usage := chunk.get("usage"):
|
|
input_tokens = usage.get("prompt_tokens", 0)
|
|
output_tokens = usage.get("completion_tokens", 0)
|
|
usage_metadata = {
|
|
"input_tokens": input_tokens,
|
|
"output_tokens": output_tokens,
|
|
"total_tokens": usage.get("total_tokens", input_tokens + output_tokens),
|
|
}
|
|
else:
|
|
usage_metadata = None
|
|
return AIMessageChunk(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_call_chunks=tool_call_chunks,
|
|
usage_metadata=usage_metadata, # type: ignore[arg-type]
|
|
)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
|
elif role == "tool" or default_class == ToolMessageChunk:
|
|
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role)
|
|
else:
|
|
return default_class(content=content) # type: ignore
|
|
|
|
|
|
class _FunctionCall(TypedDict):
|
|
name: str
|
|
|
|
|
|
# This is basically a copy and replace for ChatFireworks, except
|
|
# - I needed to gut out tiktoken and some of the token estimation logic
|
|
# (not sure how important it is)
|
|
# - Environment variable is different
|
|
# we should refactor into some OpenAI-like class in the future
|
|
class ChatFireworks(BaseChatModel):
|
|
"""`Fireworks` Chat large language models API.
|
|
|
|
To use, you should have the
|
|
environment variable ``FIREWORKS_API_KEY`` set with your API key.
|
|
|
|
Any parameters that are valid to be passed to the fireworks.create call
|
|
can be passed in, even if not explicitly saved on this class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_fireworks.chat_models import ChatFireworks
|
|
fireworks = ChatFireworks(
|
|
model_name="accounts/fireworks/models/mixtral-8x7b-instruct")
|
|
"""
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"fireworks_api_key": "FIREWORKS_API_KEY"}
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "chat_models", "fireworks"]
|
|
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
attributes: Dict[str, Any] = {}
|
|
if self.fireworks_api_base:
|
|
attributes["fireworks_api_base"] = self.fireworks_api_base
|
|
|
|
return attributes
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
return True
|
|
|
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
model_name: str = Field(
|
|
default="accounts/fireworks/models/mixtral-8x7b-instruct", alias="model"
|
|
)
|
|
"""Model name to use."""
|
|
temperature: float = 0.0
|
|
"""What sampling temperature to use."""
|
|
stop: Optional[Union[str, List[str]]] = Field(default=None, alias="stop_sequences")
|
|
"""Default stop sequences."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
fireworks_api_key: SecretStr = Field(
|
|
alias="api_key",
|
|
default_factory=secret_from_env(
|
|
"FIREWORKS_API_KEY",
|
|
error_message=(
|
|
"You must specify an api key. "
|
|
"You can pass it an argument as `api_key=...` or "
|
|
"set the environment variable `FIREWORKS_API_KEY`."
|
|
),
|
|
),
|
|
)
|
|
"""Fireworks API key.
|
|
|
|
Automatically read from env variable `FIREWORKS_API_KEY` if not provided.
|
|
"""
|
|
|
|
fireworks_api_base: Optional[str] = Field(
|
|
alias="base_url", default_factory=from_env("FIREWORKS_API_BASE", default=None)
|
|
)
|
|
"""Base URL path for API requests, leave blank if not using a proxy or service
|
|
emulator."""
|
|
request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
|
|
default=None, alias="timeout"
|
|
)
|
|
"""Timeout for requests to Fireworks completion API. Can be float, httpx.Timeout or
|
|
None."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
n: int = 1
|
|
"""Number of chat completions to generate for each prompt."""
|
|
max_tokens: Optional[int] = None
|
|
"""Maximum number of tokens to generate."""
|
|
max_retries: Optional[int] = None
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
model_config = ConfigDict(
|
|
populate_by_name=True,
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
values = _build_model_kwargs(values, all_required_field_names)
|
|
return values
|
|
|
|
@model_validator(mode="after")
|
|
def validate_environment(self) -> Self:
|
|
"""Validate that api key and python package exists in environment."""
|
|
if self.n < 1:
|
|
raise ValueError("n must be at least 1.")
|
|
if self.n > 1 and self.streaming:
|
|
raise ValueError("n must be 1 when streaming.")
|
|
|
|
client_params = {
|
|
"api_key": (
|
|
self.fireworks_api_key.get_secret_value()
|
|
if self.fireworks_api_key
|
|
else None
|
|
),
|
|
"base_url": self.fireworks_api_base,
|
|
"timeout": self.request_timeout,
|
|
}
|
|
|
|
if not self.client:
|
|
self.client = Fireworks(**client_params).chat.completions
|
|
if not self.async_client:
|
|
self.async_client = AsyncFireworks(**client_params).chat.completions
|
|
if self.max_retries:
|
|
self.client._max_retries = self.max_retries
|
|
self.async_client._max_retries = self.max_retries
|
|
return self
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Fireworks API."""
|
|
params = {
|
|
"model": self.model_name,
|
|
"stream": self.streaming,
|
|
"n": self.n,
|
|
"temperature": self.temperature,
|
|
"stop": self.stop,
|
|
**self.model_kwargs,
|
|
}
|
|
if self.max_tokens is not None:
|
|
params["max_tokens"] = self.max_tokens
|
|
return params
|
|
|
|
def _get_ls_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> LangSmithParams:
|
|
"""Get standard params for tracing."""
|
|
params = self._get_invocation_params(stop=stop, **kwargs)
|
|
ls_params = LangSmithParams(
|
|
ls_provider="fireworks",
|
|
ls_model_name=self.model_name,
|
|
ls_model_type="chat",
|
|
ls_temperature=params.get("temperature", self.temperature),
|
|
)
|
|
if ls_max_tokens := params.get("max_tokens", self.max_tokens):
|
|
ls_params["ls_max_tokens"] = ls_max_tokens
|
|
if ls_stop := stop or params.get("stop", None):
|
|
ls_params["ls_stop"] = ls_stop
|
|
return ls_params
|
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
|
overall_token_usage: dict = {}
|
|
system_fingerprint = None
|
|
for output in llm_outputs:
|
|
if output is None:
|
|
# Happens in streaming
|
|
continue
|
|
token_usage = output["token_usage"]
|
|
if token_usage is not None:
|
|
for k, v in token_usage.items():
|
|
if k in overall_token_usage:
|
|
overall_token_usage[k] += v
|
|
else:
|
|
overall_token_usage[k] = v
|
|
if system_fingerprint is None:
|
|
system_fingerprint = output.get("system_fingerprint")
|
|
combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
|
|
if system_fingerprint:
|
|
combined["system_fingerprint"] = system_fingerprint
|
|
return combined
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
|
|
for chunk in self.client.create(messages=message_dicts, **params):
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.model_dump()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
message_chunk = _convert_chunk_to_message_chunk(chunk, default_chunk_class)
|
|
generation_info = {}
|
|
if finish_reason := choice.get("finish_reason"):
|
|
generation_info["finish_reason"] = finish_reason
|
|
generation_info["model_name"] = self.model_name
|
|
logprobs = choice.get("logprobs")
|
|
if logprobs:
|
|
generation_info["logprobs"] = logprobs
|
|
default_chunk_class = message_chunk.__class__
|
|
generation_chunk = ChatGenerationChunk(
|
|
message=message_chunk, generation_info=generation_info or None
|
|
)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(
|
|
generation_chunk.text, chunk=generation_chunk, logprobs=logprobs
|
|
)
|
|
yield generation_chunk
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {
|
|
**params,
|
|
**({"stream": stream} if stream is not None else {}),
|
|
**kwargs,
|
|
}
|
|
response = self.client.create(messages=message_dicts, **params)
|
|
return self._create_chat_result(response)
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
params = self._default_params
|
|
if stop is not None:
|
|
params["stop"] = stop
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
|
|
generations = []
|
|
if not isinstance(response, dict):
|
|
response = response.model_dump()
|
|
token_usage = response.get("usage", {})
|
|
for res in response["choices"]:
|
|
message = _convert_dict_to_message(res["message"])
|
|
if token_usage and isinstance(message, AIMessage):
|
|
message.usage_metadata = {
|
|
"input_tokens": token_usage.get("prompt_tokens", 0),
|
|
"output_tokens": token_usage.get("completion_tokens", 0),
|
|
"total_tokens": token_usage.get("total_tokens", 0),
|
|
}
|
|
generation_info = dict(finish_reason=res.get("finish_reason"))
|
|
if "logprobs" in res:
|
|
generation_info["logprobs"] = res["logprobs"]
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=generation_info,
|
|
)
|
|
generations.append(gen)
|
|
llm_output = {
|
|
"token_usage": token_usage,
|
|
"model_name": self.model_name,
|
|
"system_fingerprint": response.get("system_fingerprint", ""),
|
|
}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
|
|
async for chunk in self.async_client.acreate(messages=message_dicts, **params):
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.model_dump()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
message_chunk = _convert_chunk_to_message_chunk(chunk, default_chunk_class)
|
|
generation_info = {}
|
|
if finish_reason := choice.get("finish_reason"):
|
|
generation_info["finish_reason"] = finish_reason
|
|
generation_info["model_name"] = self.model_name
|
|
logprobs = choice.get("logprobs")
|
|
if logprobs:
|
|
generation_info["logprobs"] = logprobs
|
|
default_chunk_class = message_chunk.__class__
|
|
generation_chunk = ChatGenerationChunk(
|
|
message=message_chunk, generation_info=generation_info or None
|
|
)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(
|
|
token=generation_chunk.text,
|
|
chunk=generation_chunk,
|
|
logprobs=logprobs,
|
|
)
|
|
yield generation_chunk
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {
|
|
**params,
|
|
**({"stream": stream} if stream is not None else {}),
|
|
**kwargs,
|
|
}
|
|
response = await self.async_client.acreate(messages=message_dicts, **params)
|
|
return self._create_chat_result(response)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {"model_name": self.model_name, **self._default_params}
|
|
|
|
def _get_invocation_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model."""
|
|
return {
|
|
"model": self.model_name,
|
|
**super()._get_invocation_params(stop=stop),
|
|
**self._default_params,
|
|
**kwargs,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "fireworks-chat"
|
|
|
|
@deprecated(
|
|
since="0.2.1",
|
|
alternative="langchain_fireworks.chat_models.ChatFireworks.bind_tools",
|
|
removal="1.0.0",
|
|
)
|
|
def bind_functions(
|
|
self,
|
|
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
function_call: Optional[
|
|
Union[_FunctionCall, str, Literal["auto", "none"]]
|
|
] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind functions (and other objects) to this chat model.
|
|
|
|
Assumes model is compatible with Fireworks function-calling API.
|
|
|
|
NOTE: Using bind_tools is recommended instead, as the `functions` and
|
|
`function_call` request parameters are officially marked as deprecated by
|
|
Fireworks.
|
|
|
|
Args:
|
|
functions: A list of function definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, or callable. Pydantic
|
|
models and callables will be automatically converted to
|
|
their schema dictionary representation.
|
|
function_call: Which function to require the model to call.
|
|
Must be the name of the single provided function or
|
|
"auto" to automatically determine which function to call
|
|
(if any).
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
|
if function_call is not None:
|
|
function_call = (
|
|
{"name": function_call}
|
|
if isinstance(function_call, str)
|
|
and function_call not in ("auto", "none")
|
|
else function_call
|
|
)
|
|
if isinstance(function_call, dict) and len(formatted_functions) != 1:
|
|
raise ValueError(
|
|
"When specifying `function_call`, you must provide exactly one "
|
|
"function."
|
|
)
|
|
if (
|
|
isinstance(function_call, dict)
|
|
and formatted_functions[0]["name"] != function_call["name"]
|
|
):
|
|
raise ValueError(
|
|
f"Function call {function_call} was specified, but the only "
|
|
f"provided function was {formatted_functions[0]['name']}."
|
|
)
|
|
kwargs = {**kwargs, "function_call": function_call}
|
|
return super().bind(
|
|
functions=formatted_functions,
|
|
**kwargs,
|
|
)
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
*,
|
|
tool_choice: Optional[
|
|
Union[dict, str, Literal["auto", "any", "none"], bool]
|
|
] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
Assumes model is compatible with Fireworks tool-calling API.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Supports any tool definition handled by
|
|
:meth:`langchain_core.utils.function_calling.convert_to_openai_tool`.
|
|
tool_choice: Which tool to require the model to call.
|
|
Must be the name of the single provided function,
|
|
"auto" to automatically determine which function to call
|
|
with the option to not call any function, "any" to enforce that some
|
|
function is called, or a dict of the form:
|
|
{"type": "function", "function": {"name": <<tool_name>>}}.
|
|
**kwargs: Any additional parameters to pass to
|
|
:meth:`~langchain_fireworks.chat_models.ChatFireworks.bind`
|
|
"""
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
if tool_choice is not None and tool_choice:
|
|
if isinstance(tool_choice, str) and (
|
|
tool_choice not in ("auto", "any", "none")
|
|
):
|
|
tool_choice = {"type": "function", "function": {"name": tool_choice}}
|
|
if isinstance(tool_choice, bool):
|
|
if len(tools) > 1:
|
|
raise ValueError(
|
|
"tool_choice can only be True when there is one tool. Received "
|
|
f"{len(tools)} tools."
|
|
)
|
|
tool_name = formatted_tools[0]["function"]["name"]
|
|
tool_choice = {
|
|
"type": "function",
|
|
"function": {"name": tool_name},
|
|
}
|
|
|
|
kwargs["tool_choice"] = tool_choice
|
|
return super().bind(tools=formatted_tools, **kwargs)
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
|
*,
|
|
method: Literal[
|
|
"function_calling", "json_mode", "json_schema"
|
|
] = "function_calling",
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema:
|
|
The output schema. Can be passed in as:
|
|
- an OpenAI function/tool schema,
|
|
- a JSON Schema,
|
|
- a TypedDict class (support added in 0.1.7),
|
|
- or a Pydantic class.
|
|
If ``schema`` is a Pydantic class then the model output will be a
|
|
Pydantic instance of that class, and the model-generated fields will be
|
|
validated by the Pydantic class. Otherwise the model output will be a
|
|
dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
|
|
for more on how to properly specify types and descriptions of
|
|
schema fields when specifying a Pydantic or TypedDict class.
|
|
|
|
.. versionchanged:: 0.1.7
|
|
|
|
Added support for TypedDict class.
|
|
|
|
method: The method for steering model generation, one of:
|
|
|
|
- "function_calling":
|
|
Uses Fireworks's `tool-calling features <https://docs.fireworks.ai/guides/function-calling>`_.
|
|
- "json_schema":
|
|
Uses Fireworks's `structured output feature <https://docs.fireworks.ai/structured-responses/structured-response-formatting>`_.
|
|
- "json_mode":
|
|
Uses Fireworks's `JSON mode feature <https://docs.fireworks.ai/structured-responses/structured-response-formatting>`_.
|
|
|
|
.. versionchanged:: 0.2.8
|
|
|
|
Added support for ``"json_schema"``.
|
|
|
|
include_raw:
|
|
If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
|
|
|
|
If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
|
|
an instance of ``schema`` (i.e., a Pydantic object).
|
|
|
|
Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
|
|
|
|
If ``include_raw`` is True, then Runnable outputs a dict with keys:
|
|
- ``"raw"``: BaseMessage
|
|
- ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
|
|
- ``"parsing_error"``: Optional[BaseException]
|
|
|
|
Example: schema=Pydantic class, method="function_calling", include_raw=False:
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from langchain_fireworks import ChatFireworks
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
# If we provide default values and/or descriptions for fields, these will be passed
|
|
# to the model. This is an important part of improving a model's ability to
|
|
# correctly return structured outputs.
|
|
justification: Optional[str] = Field(
|
|
default=None, description="A justification for the answer."
|
|
)
|
|
|
|
|
|
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
Example: schema=Pydantic class, method="function_calling", include_raw=True:
|
|
.. code-block:: python
|
|
|
|
from langchain_fireworks import ChatFireworks
|
|
from pydantic import BaseModel
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: str
|
|
|
|
|
|
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification, include_raw=True
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: schema=TypedDict class, method="function_calling", include_raw=False:
|
|
.. code-block:: python
|
|
|
|
# IMPORTANT: If you are using Python <=3.8, you need to import Annotated
|
|
# from typing_extensions, not from typing.
|
|
from typing_extensions import Annotated, TypedDict
|
|
|
|
from langchain_fireworks import ChatFireworks
|
|
|
|
|
|
class AnswerWithJustification(TypedDict):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: Annotated[
|
|
Optional[str], None, "A justification for the answer."
|
|
]
|
|
|
|
|
|
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
Example: schema=OpenAI function schema, method="function_calling", include_raw=False:
|
|
.. code-block:: python
|
|
|
|
from langchain_fireworks import ChatFireworks
|
|
|
|
oai_schema = {
|
|
'name': 'AnswerWithJustification',
|
|
'description': 'An answer to the user question along with justification for the answer.',
|
|
'parameters': {
|
|
'type': 'object',
|
|
'properties': {
|
|
'answer': {'type': 'string'},
|
|
'justification': {'description': 'A justification for the answer.', 'type': 'string'}
|
|
},
|
|
'required': ['answer']
|
|
}
|
|
}
|
|
|
|
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
|
structured_llm = llm.with_structured_output(oai_schema)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
Example: schema=Pydantic class, method="json_mode", include_raw=True:
|
|
.. code-block::
|
|
|
|
from langchain_fireworks import ChatFireworks
|
|
from pydantic import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification,
|
|
method="json_mode",
|
|
include_raw=True
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'. "
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{"answer": "They are both the same weight.", "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight."}'),
|
|
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: schema=None, method="json_mode", include_raw=True:
|
|
.. code-block::
|
|
|
|
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'. "
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{"answer": "They are both the same weight.", "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight."}'),
|
|
# 'parsed': {
|
|
# 'answer': 'They are both the same weight.',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
|
|
# },
|
|
# 'parsing_error': None
|
|
# }
|
|
""" # noqa: E501
|
|
_ = kwargs.pop("strict", None)
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = _is_pydantic_class(schema)
|
|
if method == "function_calling":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is 'function_calling'. "
|
|
"Received None."
|
|
)
|
|
formatted_tool = convert_to_openai_tool(schema)
|
|
tool_name = formatted_tool["function"]["name"]
|
|
llm = self.bind_tools(
|
|
[schema],
|
|
tool_choice=tool_name,
|
|
ls_structured_output_format={
|
|
"kwargs": {"method": "function_calling"},
|
|
"schema": formatted_tool,
|
|
},
|
|
)
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], # type: ignore[list-item]
|
|
first_tool_only=True, # type: ignore[list-item]
|
|
)
|
|
else:
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=tool_name, first_tool_only=True
|
|
)
|
|
elif method == "json_schema":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is 'json_schema'. "
|
|
"Received None."
|
|
)
|
|
formatted_schema = convert_to_json_schema(schema)
|
|
llm = self.bind(
|
|
response_format={"type": "json_object", "schema": formatted_schema},
|
|
ls_structured_output_format={
|
|
"kwargs": {"method": "json_schema"},
|
|
"schema": schema,
|
|
},
|
|
)
|
|
output_parser = (
|
|
PydanticOutputParser(pydantic_object=schema) # type: ignore[arg-type]
|
|
if is_pydantic_schema
|
|
else JsonOutputParser()
|
|
)
|
|
elif method == "json_mode":
|
|
llm = self.bind(
|
|
response_format={"type": "json_object"},
|
|
ls_structured_output_format={
|
|
"kwargs": {"method": "json_mode"},
|
|
"schema": schema,
|
|
},
|
|
)
|
|
output_parser = (
|
|
PydanticOutputParser(pydantic_object=schema) # type: ignore[type-var, arg-type]
|
|
if is_pydantic_schema
|
|
else JsonOutputParser()
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
|
f"'json_mode'. Received: '{method}'"
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
|
|
def _is_pydantic_class(obj: Any) -> bool:
|
|
return isinstance(obj, type) and is_basemodel_subclass(obj)
|
|
|
|
|
|
def _lc_tool_call_to_fireworks_tool_call(tool_call: ToolCall) -> dict:
|
|
return {
|
|
"type": "function",
|
|
"id": tool_call["id"],
|
|
"function": {
|
|
"name": tool_call["name"],
|
|
"arguments": json.dumps(tool_call["args"]),
|
|
},
|
|
}
|
|
|
|
|
|
def _lc_invalid_tool_call_to_fireworks_tool_call(
|
|
invalid_tool_call: InvalidToolCall,
|
|
) -> dict:
|
|
return {
|
|
"type": "function",
|
|
"id": invalid_tool_call["id"],
|
|
"function": {
|
|
"name": invalid_tool_call["name"],
|
|
"arguments": invalid_tool_call["args"],
|
|
},
|
|
}
|