langchain/libs/partners/box/langchain_box/retrievers/box.py
Scott Hurrey 558fb4d66d
box: Add citation support to langchain_box.retrievers.BoxRetriever when used with Box AI (#27012)
Thank you for contributing to LangChain!

**Description:** Box AI can return responses, but it can also be
configured to return citations. This change allows the developer to
decide if they want the answer, the citations, or both. Regardless of
the combination, this is returned as a single List[Document] object.

**Dependencies:** Updated to the latest Box Python SDK, v1.5.1
**Twitter handle:** BoxPlatform


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-04 18:32:34 +00:00

186 lines
6.0 KiB
Python

from typing import List, Optional
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import from_env
from pydantic import ConfigDict, Field, model_validator
from typing_extensions import Self
from langchain_box.utilities import BoxAuth, BoxSearchOptions, _BoxAPIWrapper
class BoxRetriever(BaseRetriever):
"""Box retriever.
`BoxRetriever` provides the ability to retrieve content from
your Box instance in a couple of ways.
1. You can use the Box full-text search to retrieve the
complete document(s) that match your search query, as
`List[Document]`
2. You can use the Box AI Platform API to retrieve the results
from a Box AI prompt. This can be a `Document` containing
the result of the prompt, or you can retrieve the citations
used to generate the prompt to include in your vectorstore.
Setup:
Install ``langchain-box``:
.. code-block:: bash
pip install -U langchain-box
Instantiate:
To use search:
.. code-block:: python
from langchain_box.retrievers import BoxRetriever
retriever = BoxRetriever()
To use Box AI:
.. code-block:: python
from langchain_box.retrievers import BoxRetriever
file_ids=["12345","67890"]
retriever = BoxRetriever(file_ids)
Usage:
.. code-block:: python
retriever = BoxRetriever()
retriever.invoke("victor")
print(docs[0].page_content[:100])
.. code-block:: none
[
Document(
metadata={
'source': 'url',
'title': 'FIVE_FEET_AND_RISING_by_Peter_Sollett_pdf'
},
page_content='\\n3/20/23, 5:31 PM F...'
)
]
Use within a chain:
.. code-block:: python
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
retriever = BoxRetriever(box_developer_token=box_developer_token, character_limit=10000)
context="You are an actor reading scripts to learn about your role in an upcoming movie."
question="describe the character Victor"
prompt = ChatPromptTemplate.from_template(
\"""Answer the question based only on the context provided.
Context: {context}
Question: {question}\"""
)
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke("Victor") # search query to find files in Box
)
.. code-block:: none
'Victor is a skinny 12-year-old with sloppy hair who is seen
sleeping on his fire escape in the sun. He is hesitant to go to
the pool with his friend Carlos because he is afraid of getting
in trouble for not letting his mother cut his hair. Ultimately,
he decides to go to the pool with Carlos.'
""" # noqa: E501
box_developer_token: Optional[str] = Field(
default_factory=from_env("BOX_DEVELOPER_TOKEN", default=None)
)
box_auth: Optional[BoxAuth] = None
"""Configured
`BoxAuth <https://python.langchain.com/v0.2/api_reference/box/utilities/langchain_box.utilities.box.BoxAuth.html>`_
object"""
box_file_ids: Optional[List[str]] = None
"""List[str] containing Box file ids"""
character_limit: Optional[int] = -1
"""character_limit is an int that caps the number of characters to
return per document."""
box_search_options: Optional[BoxSearchOptions] = None
"""Search options to configure BoxRetriever to narrow search results."""
answer: Optional[bool] = True
"""When using Box AI, return the answer to the prompt as a `Document`
object. Returned as `List[Document`]. Default is `True`."""
citations: Optional[bool] = False
"""When using Box AI, return the citations from to the prompt as
`Document` objects. Can be used with answer. Returned as `List[Document`].
Default is `False`."""
_box: Optional[_BoxAPIWrapper]
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra="allow",
)
@model_validator(mode="after")
def validate_box_loader_inputs(self) -> Self:
_box = None
"""Validate that we have either a box_developer_token or box_auth."""
if not self.box_auth and not self.box_developer_token:
raise ValueError(
"you must provide box_developer_token or a box_auth "
"generated with langchain_box.utilities.BoxAuth"
)
_box = _BoxAPIWrapper( # type: ignore[call-arg]
box_developer_token=self.box_developer_token,
box_auth=self.box_auth,
character_limit=self.character_limit,
box_search_options=self.box_search_options,
)
self._box = _box
return self
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
if self.box_file_ids: # If using Box AI
return self._box.ask_box_ai( # type: ignore[union-attr]
query=query,
box_file_ids=self.box_file_ids,
answer=self.answer, # type: ignore[arg-type]
citations=self.citations, # type: ignore[arg-type]
)
else: # If using Search
return self._box.search_box(query=query) # type: ignore[union-attr]