mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-27 19:46:55 +00:00
Given the current erroring behavior, every time we've moved a kwarg from model_kwargs and made it its own field that was a breaking change. Updating this behavior to support the old instantiations / serializations. Assuming build_extra_kwargs was not something that itself is being used externally and needs to be kept backwards compatible
216 lines
7.6 KiB
Python
216 lines
7.6 KiB
Python
"""Wrapper around Fireworks AI's Completion API."""
|
|
|
|
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import requests
|
|
from aiohttp import ClientSession
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.utils import get_pydantic_field_names
|
|
from langchain_core.utils.utils import _build_model_kwargs, secret_from_env
|
|
from pydantic import ConfigDict, Field, SecretStr, model_validator
|
|
|
|
from langchain_fireworks.version import __version__
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Fireworks(LLM):
|
|
"""LLM models from `Fireworks`.
|
|
|
|
To use, you'll need an API key which you can find here:
|
|
https://fireworks.ai This can be passed in as init param
|
|
``fireworks_api_key`` or set as environment variable ``FIREWORKS_API_KEY``.
|
|
|
|
Fireworks AI API reference: https://readme.fireworks.ai/
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
response = fireworks.generate(["Tell me a joke."])
|
|
"""
|
|
|
|
base_url: str = "https://api.fireworks.ai/inference/v1/completions"
|
|
"""Base inference API URL."""
|
|
fireworks_api_key: SecretStr = Field(
|
|
alias="api_key",
|
|
default_factory=secret_from_env(
|
|
"FIREWORKS_API_KEY",
|
|
error_message=(
|
|
"You must specify an api key. "
|
|
"You can pass it an argument as `api_key=...` or "
|
|
"set the environment variable `FIREWORKS_API_KEY`."
|
|
),
|
|
),
|
|
)
|
|
"""Fireworks API key.
|
|
|
|
Automatically read from env variable `FIREWORKS_API_KEY` if not provided.
|
|
"""
|
|
model: str
|
|
"""Model name. Available models listed here:
|
|
https://readme.fireworks.ai/
|
|
"""
|
|
temperature: Optional[float] = None
|
|
"""Model temperature."""
|
|
top_p: Optional[float] = None
|
|
"""Used to dynamically adjust the number of choices for each predicted token based
|
|
on the cumulative probabilities. A value of 1 will always yield the same
|
|
output. A temperature less than 1 favors more correctness and is appropriate
|
|
for question answering or summarization. A value greater than 1 introduces more
|
|
randomness in the output.
|
|
"""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
top_k: Optional[int] = None
|
|
"""Used to limit the number of choices for the next predicted word or token. It
|
|
specifies the maximum number of tokens to consider at each step, based on their
|
|
probability of occurrence. This technique helps to speed up the generation
|
|
process and can improve the quality of the generated text by focusing on the
|
|
most likely options.
|
|
"""
|
|
max_tokens: Optional[int] = None
|
|
"""The maximum number of tokens to generate."""
|
|
repetition_penalty: Optional[float] = None
|
|
"""A number that controls the diversity of generated text by reducing the
|
|
likelihood of repeated sequences. Higher values decrease repetition.
|
|
"""
|
|
logprobs: Optional[int] = None
|
|
"""An integer that specifies how many top token log probabilities are included in
|
|
the response for each token generation step.
|
|
"""
|
|
|
|
model_config = ConfigDict(
|
|
extra="forbid",
|
|
populate_by_name=True,
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
values = _build_model_kwargs(values, all_required_field_names)
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of model."""
|
|
return "fireworks"
|
|
|
|
def _format_output(self, output: dict) -> str:
|
|
return output["choices"][0]["text"]
|
|
|
|
@staticmethod
|
|
def get_user_agent() -> str:
|
|
return f"langchain-fireworks/{__version__}"
|
|
|
|
@property
|
|
def default_params(self) -> Dict[str, Any]:
|
|
return {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"max_tokens": self.max_tokens,
|
|
"repetition_penalty": self.repetition_penalty,
|
|
}
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to Fireworks's text generation endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
|
|
Returns:
|
|
The string generated by the model..
|
|
"""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
|
payload: Dict[str, Any] = {
|
|
**self.default_params,
|
|
"prompt": prompt,
|
|
"stop": stop_to_use,
|
|
**kwargs,
|
|
}
|
|
|
|
# filter None values to not pass them to the http payload
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
response = requests.post(url=self.base_url, json=payload, headers=headers)
|
|
|
|
if response.status_code >= 500:
|
|
raise Exception(f"Fireworks Server: Error {response.status_code}")
|
|
elif response.status_code >= 400:
|
|
raise ValueError(f"Fireworks received an invalid payload: {response.text}")
|
|
elif response.status_code != 200:
|
|
raise Exception(
|
|
f"Fireworks returned an unexpected response with status "
|
|
f"{response.status_code}: {response.text}"
|
|
)
|
|
|
|
data = response.json()
|
|
output = self._format_output(data)
|
|
|
|
return output
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call Fireworks model to get predictions based on the prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
"""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
|
payload: Dict[str, Any] = {
|
|
**self.default_params,
|
|
"prompt": prompt,
|
|
"stop": stop_to_use,
|
|
**kwargs,
|
|
}
|
|
|
|
# filter None values to not pass them to the http payload
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
async with ClientSession() as session:
|
|
async with session.post(
|
|
self.base_url, json=payload, headers=headers
|
|
) as response:
|
|
if response.status >= 500:
|
|
raise Exception(f"Fireworks Server: Error {response.status}")
|
|
elif response.status >= 400:
|
|
raise ValueError(
|
|
f"Fireworks received an invalid payload: {response.text}"
|
|
)
|
|
elif response.status != 200:
|
|
raise Exception(
|
|
f"Fireworks returned an unexpected response with status "
|
|
f"{response.status}: {response.text}"
|
|
)
|
|
|
|
response_json = await response.json()
|
|
output = self._format_output(response_json)
|
|
return output
|