langchain/libs/standard-tests/langchain_tests/integration_tests/chat_models.py
ccurme a433039a56
core[patch]: support final AIMessage responses in tool_example_to_messages (#28267)
We have a test
[test_structured_few_shot_examples](ad4333ca03/libs/standard-tests/langchain_tests/integration_tests/chat_models.py (L546))
in standard integration tests that implements a version of tool-calling
few shot examples that works with ~all tested providers. The formulation
supported by ~all providers is: `human message, tool call, tool message,
AI reponse`.

Here we update
`langchain_core.utils.function_calling.tool_example_to_messages` to
support this formulation.

The `tool_example_to_messages` util is undocumented outside of our API
reference. IMO, if we are testing that this function works across all
providers, it can be helpful to feature it in our guides. The structured
few-shot examples we document at the moment require users to implement
this function and can be simplified.
2024-11-22 15:38:49 +00:00

1033 lines
42 KiB
Python

import base64
import json
from typing import List, Optional, cast
import httpx
import pytest
from langchain_core.language_models import BaseChatModel, GenericFakeChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from langchain_core.utils.function_calling import tool_example_to_messages
from pydantic import BaseModel, Field
from pydantic.v1 import BaseModel as BaseModelV1
from pydantic.v1 import Field as FieldV1
from langchain_tests.unit_tests.chat_models import (
ChatModelTests,
my_adder_tool,
)
from langchain_tests.utils.pydantic import PYDANTIC_MAJOR_VERSION
class MagicFunctionSchema(BaseModel):
input: int = Field(..., gt=-1000, lt=1000)
@tool(args_schema=MagicFunctionSchema)
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
@tool
def magic_function_no_args() -> int:
"""Calculates a magic function."""
return 5
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
def _validate_tool_call_message(message: BaseMessage) -> None:
assert isinstance(message, AIMessage)
assert len(message.tool_calls) == 1
tool_call = message.tool_calls[0]
assert tool_call["name"] == "magic_function"
assert tool_call["args"] == {"input": 3}
assert tool_call["id"] is not None
assert tool_call["type"] == "tool_call"
def _validate_tool_call_message_no_args(message: BaseMessage) -> None:
assert isinstance(message, AIMessage)
assert len(message.tool_calls) == 1
tool_call = message.tool_calls[0]
assert tool_call["name"] == "magic_function_no_args"
assert tool_call["args"] == {}
assert tool_call["id"] is not None
assert tool_call["type"] == "tool_call"
class ChatModelIntegrationTests(ChatModelTests):
@property
def standard_chat_model_params(self) -> dict:
return {}
def test_invoke(self, model: BaseChatModel) -> None:
"""Test to verify that `model.invoke(simple_message)` works.
This should pass for all integrations.
.. dropdown:: Troubleshooting
If this test fails, you should make sure your _generate method
does not raise any exceptions, and that it returns a valid
:class:`~langchain_core.outputs.chat_result.ChatResult` like so:
.. code-block:: python
return ChatResult(
generations=[ChatGeneration(
message=AIMessage(content="Output text")
)]
)
"""
result = model.invoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
async def test_ainvoke(self, model: BaseChatModel) -> None:
"""Test to verify that `await model.ainvoke(simple_message)` works.
This should pass for all integrations. Passing this test does not indicate
a "natively async" implementation, but rather that the model can be used
in an async context.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`.
because `ainvoke` has a default implementation that calls `invoke` in an
async context.
If that test passes but not this one, you should make sure your _agenerate
method does not raise any exceptions, and that it returns a valid
:class:`~langchain_core.outputs.chat_result.ChatResult` like so:
.. code-block:: python
return ChatResult(
generations=[ChatGeneration(
message=AIMessage(content="Output text")
)]
)
"""
result = await model.ainvoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def test_stream(self, model: BaseChatModel) -> None:
"""Test to verify that `model.stream(simple_message)` works.
This should pass for all integrations. Passing this test does not indicate
a "streaming" implementation, but rather that the model can be used in a
streaming context.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`.
because `stream` has a default implementation that calls `invoke` and yields
the result as a single chunk.
If that test passes but not this one, you should make sure your _stream
method does not raise any exceptions, and that it yields valid
:class:`~langchain_core.outputs.chat_generation.ChatGenerationChunk`
objects like so:
.. code-block:: python
yield ChatGenerationChunk(
message=AIMessageChunk(content="chunk text")
)
"""
num_tokens = 0
for token in model.stream("Hello"):
assert token is not None
assert isinstance(token, AIMessageChunk)
num_tokens += len(token.content)
assert num_tokens > 0
async def test_astream(self, model: BaseChatModel) -> None:
"""Test to verify that `await model.astream(simple_message)` works.
This should pass for all integrations. Passing this test does not indicate
a "natively async" or "streaming" implementation, but rather that the model can
be used in an async streaming context.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_stream`.
and
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_ainvoke`.
because `astream` has a default implementation that calls `_stream` in an
async context if it is implemented, or `ainvoke` and yields the result as a
single chunk if not.
If those tests pass but not this one, you should make sure your _astream
method does not raise any exceptions, and that it yields valid
:class:`~langchain_core.outputs.chat_generation.ChatGenerationChunk`
objects like so:
.. code-block:: python
yield ChatGenerationChunk(
message=AIMessageChunk(content="chunk text")
)
"""
num_tokens = 0
async for token in model.astream("Hello"):
assert token is not None
assert isinstance(token, AIMessageChunk)
num_tokens += len(token.content)
assert num_tokens > 0
def test_batch(self, model: BaseChatModel) -> None:
"""Test to verify that `model.batch([messages])` works.
This should pass for all integrations. Tests the model's ability to process
multiple prompts in a single batch.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`
because `batch` has a default implementation that calls `invoke` for each
message in the batch.
If that test passes but not this one, you should make sure your `batch`
method does not raise any exceptions, and that it returns a list of valid
:class:`~langchain_core.messages.AIMessage` objects.
"""
batch_results = model.batch(["Hello", "Hey"])
assert batch_results is not None
assert isinstance(batch_results, list)
assert len(batch_results) == 2
for result in batch_results:
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
async def test_abatch(self, model: BaseChatModel) -> None:
"""Test to verify that `await model.abatch([messages])` works.
This should pass for all integrations. Tests the model's ability to process
multiple prompts in a single batch asynchronously.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_batch`
and
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_ainvoke`
because `abatch` has a default implementation that calls `ainvoke` for each
message in the batch.
If those tests pass but not this one, you should make sure your `abatch`
method does not raise any exceptions, and that it returns a list of valid
:class:`~langchain_core.messages.AIMessage` objects.
"""
batch_results = await model.abatch(["Hello", "Hey"])
assert batch_results is not None
assert isinstance(batch_results, list)
assert len(batch_results) == 2
for result in batch_results:
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def test_conversation(self, model: BaseChatModel) -> None:
"""Test to verify that the model can handle multi-turn conversations.
This should pass for all integrations. Tests the model's ability to process
a sequence of alternating human and AI messages as context for generating
the next response.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`
because this test also uses `model.invoke()`.
If that test passes but not this one, you should verify that:
1. Your model correctly processes the message history
2. The model maintains appropriate context from previous messages
3. The response is a valid :class:`~langchain_core.messages.AIMessage`
"""
messages = [
HumanMessage("hello"),
AIMessage("hello"),
HumanMessage("how are you"),
]
result = model.invoke(messages)
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def test_usage_metadata(self, model: BaseChatModel) -> None:
"""Test to verify that the model returns correct usage metadata.
This test is optional and should be skipped if the model does not return
usage metadata (see Configuration below).
.. dropdown:: Configuration
By default, this test is run.
To disable this feature, set `returns_usage_metadata` to False in your test
class:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def returns_usage_metadata(self) -> bool:
return False
This test can also check the format of specific kinds of usage metadata
based on the `supported_usage_metadata_details` property. This property
should be configured as follows with the types of tokens that the model
supports tracking:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def supported_usage_metadata_details(self) -> dict:
return {
"invoke": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
"stream": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
}
.. dropdown:: Troubleshooting
If this test fails, first verify that your model returns
:class:`~langchain_core.messages.ai.UsageMetadata` dicts
attached to the returned AIMessage object in `_generate`:
.. code-block:: python
return ChatResult(
generations=[ChatGeneration(
message=AIMessage(
content="Output text",
usage_metadata={
"input_tokens": 350,
"output_tokens": 240,
"total_tokens": 590,
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
}
}
)
)]
)
"""
if not self.returns_usage_metadata:
pytest.skip("Not implemented.")
result = model.invoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
assert result.usage_metadata is not None
assert isinstance(result.usage_metadata["input_tokens"], int)
assert isinstance(result.usage_metadata["output_tokens"], int)
assert isinstance(result.usage_metadata["total_tokens"], int)
if "audio_input" in self.supported_usage_metadata_details["invoke"]:
msg = self.invoke_with_audio_input()
assert msg.usage_metadata is not None
assert msg.usage_metadata["input_token_details"] is not None
assert isinstance(msg.usage_metadata["input_token_details"]["audio"], int)
assert msg.usage_metadata["input_tokens"] >= sum(
(v or 0) # type: ignore[misc]
for v in msg.usage_metadata["input_token_details"].values()
)
if "audio_output" in self.supported_usage_metadata_details["invoke"]:
msg = self.invoke_with_audio_output()
assert msg.usage_metadata is not None
assert msg.usage_metadata["output_token_details"] is not None
assert isinstance(msg.usage_metadata["output_token_details"]["audio"], int)
assert int(msg.usage_metadata["output_tokens"]) >= sum(
(v or 0) # type: ignore[misc]
for v in msg.usage_metadata["output_token_details"].values()
)
if "reasoning_output" in self.supported_usage_metadata_details["invoke"]:
msg = self.invoke_with_reasoning_output()
assert msg.usage_metadata is not None
assert msg.usage_metadata["output_token_details"] is not None
assert isinstance(
msg.usage_metadata["output_token_details"]["reasoning"],
int,
)
assert msg.usage_metadata["output_tokens"] >= sum(
(v or 0) # type: ignore[misc]
for v in msg.usage_metadata["output_token_details"].values()
)
if "cache_read_input" in self.supported_usage_metadata_details["invoke"]:
msg = self.invoke_with_cache_read_input()
assert msg.usage_metadata is not None
assert msg.usage_metadata["input_token_details"] is not None
assert isinstance(
msg.usage_metadata["input_token_details"]["cache_read"],
int,
)
assert msg.usage_metadata["input_tokens"] >= sum(
(v or 0) # type: ignore[misc]
for v in msg.usage_metadata["input_token_details"].values()
)
if "cache_creation_input" in self.supported_usage_metadata_details["invoke"]:
msg = self.invoke_with_cache_creation_input()
assert msg.usage_metadata is not None
assert msg.usage_metadata["input_token_details"] is not None
assert isinstance(
msg.usage_metadata["input_token_details"]["cache_creation"],
int,
)
assert msg.usage_metadata["input_tokens"] >= sum(
(v or 0) # type: ignore[misc]
for v in msg.usage_metadata["input_token_details"].values()
)
def test_usage_metadata_streaming(self, model: BaseChatModel) -> None:
"""
Test to verify that the model returns correct usage metadata in streaming mode.
.. dropdown:: Configuration
By default, this test is run.
To disable this feature, set `returns_usage_metadata` to False in your test
class:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def returns_usage_metadata(self) -> bool:
return False
This test can also check the format of specific kinds of usage metadata
based on the `supported_usage_metadata_details` property. This property
should be configured as follows with the types of tokens that the model
supports tracking:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def supported_usage_metadata_details(self) -> dict:
return {
"invoke": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
"stream": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
}
.. dropdown:: Troubleshooting
If this test fails, first verify that your model yields
:class:`~langchain_core.messages.ai.UsageMetadata` dicts
attached to the returned AIMessage object in `_stream`
that sum up to the total usage metadata.
Note that `input_tokens` should only be included on one of the chunks
(typically the first or the last chunk), and the rest should have 0 or None
to avoid counting input tokens multiple times.
`output_tokens` typically count the number of tokens in each chunk, not the
sum. This test will pass as long as the sum of `output_tokens` across all
chunks is not 0.
.. code-block:: python
yield ChatResult(
generations=[ChatGeneration(
message=AIMessage(
content="Output text",
usage_metadata={
"input_tokens": (
num_input_tokens if is_first_chunk else 0
),
"output_tokens": 11,
"total_tokens": (
11+num_input_tokens if is_first_chunk else 11
),
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
}
}
)
)]
)
"""
if not self.returns_usage_metadata:
pytest.skip("Not implemented.")
full: Optional[AIMessageChunk] = None
for chunk in model.stream("Write me 2 haikus. Only include the haikus."):
assert isinstance(chunk, AIMessageChunk)
# only one chunk is allowed to set usage_metadata.input_tokens
# if multiple do, it's likely a bug that will result in overcounting
# input tokens
if full and full.usage_metadata and full.usage_metadata["input_tokens"]:
assert (
not chunk.usage_metadata or not chunk.usage_metadata["input_tokens"]
), (
"Only one chunk should set input_tokens,"
" the rest should be 0 or None"
)
full = chunk if full is None else cast(AIMessageChunk, full + chunk)
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert isinstance(full.usage_metadata["input_tokens"], int)
assert isinstance(full.usage_metadata["output_tokens"], int)
assert isinstance(full.usage_metadata["total_tokens"], int)
if "audio_input" in self.supported_usage_metadata_details["stream"]:
msg = self.invoke_with_audio_input(stream=True)
assert isinstance(msg.usage_metadata["input_token_details"]["audio"], int) # type: ignore[index]
if "audio_output" in self.supported_usage_metadata_details["stream"]:
msg = self.invoke_with_audio_output(stream=True)
assert isinstance(msg.usage_metadata["output_token_details"]["audio"], int) # type: ignore[index]
if "reasoning_output" in self.supported_usage_metadata_details["stream"]:
msg = self.invoke_with_reasoning_output(stream=True)
assert isinstance(
msg.usage_metadata["output_token_details"]["reasoning"], # type: ignore[index]
int,
)
if "cache_read_input" in self.supported_usage_metadata_details["stream"]:
msg = self.invoke_with_cache_read_input(stream=True)
assert isinstance(
msg.usage_metadata["input_token_details"]["cache_read"], # type: ignore[index]
int,
)
if "cache_creation_input" in self.supported_usage_metadata_details["stream"]:
msg = self.invoke_with_cache_creation_input(stream=True)
assert isinstance(
msg.usage_metadata["input_token_details"]["cache_creation"], # type: ignore[index]
int,
)
def test_stop_sequence(self, model: BaseChatModel) -> None:
result = model.invoke("hi", stop=["you"])
assert isinstance(result, AIMessage)
custom_model = self.chat_model_class(
**{**self.chat_model_params, "stop": ["you"]}
)
result = custom_model.invoke("hi")
assert isinstance(result, AIMessage)
def test_tool_calling(self, model: BaseChatModel) -> None:
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
if self.tool_choice_value == "tool_name":
tool_choice: Optional[str] = "magic_function"
else:
tool_choice = self.tool_choice_value
model_with_tools = model.bind_tools([magic_function], tool_choice=tool_choice)
# Test invoke
query = "What is the value of magic_function(3)? Use the tool."
result = model_with_tools.invoke(query)
_validate_tool_call_message(result)
# Test stream
full: Optional[BaseMessageChunk] = None
for chunk in model_with_tools.stream(query):
full = chunk if full is None else full + chunk # type: ignore
assert isinstance(full, AIMessage)
_validate_tool_call_message(full)
async def test_tool_calling_async(self, model: BaseChatModel) -> None:
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
if self.tool_choice_value == "tool_name":
tool_choice: Optional[str] = "magic_function"
else:
tool_choice = self.tool_choice_value
model_with_tools = model.bind_tools([magic_function], tool_choice=tool_choice)
# Test ainvoke
query = "What is the value of magic_function(3)? Use the tool."
result = await model_with_tools.ainvoke(query)
_validate_tool_call_message(result)
# Test astream
full: Optional[BaseMessageChunk] = None
async for chunk in model_with_tools.astream(query):
full = chunk if full is None else full + chunk # type: ignore
assert isinstance(full, AIMessage)
_validate_tool_call_message(full)
def test_tool_calling_with_no_arguments(self, model: BaseChatModel) -> None:
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
if self.tool_choice_value == "tool_name":
tool_choice: Optional[str] = "magic_function_no_args"
else:
tool_choice = self.tool_choice_value
model_with_tools = model.bind_tools(
[magic_function_no_args], tool_choice=tool_choice
)
query = "What is the value of magic_function()? Use the tool."
result = model_with_tools.invoke(query)
_validate_tool_call_message_no_args(result)
full: Optional[BaseMessageChunk] = None
for chunk in model_with_tools.stream(query):
full = chunk if full is None else full + chunk # type: ignore
assert isinstance(full, AIMessage)
_validate_tool_call_message_no_args(full)
def test_bind_runnables_as_tools(self, model: BaseChatModel) -> None:
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
prompt = ChatPromptTemplate.from_messages(
[("human", "Hello. Please respond in the style of {answer_style}.")]
)
llm = GenericFakeChatModel(messages=iter(["hello matey"]))
chain = prompt | llm | StrOutputParser()
tool_ = chain.as_tool(
name="greeting_generator",
description="Generate a greeting in a particular style of speaking.",
)
if self.tool_choice_value == "tool_name":
tool_choice: Optional[str] = "greeting_generator"
else:
tool_choice = self.tool_choice_value
model_with_tools = model.bind_tools([tool_], tool_choice=tool_choice)
query = "Using the tool, generate a Pirate greeting."
result = model_with_tools.invoke(query)
assert isinstance(result, AIMessage)
assert result.tool_calls
tool_call = result.tool_calls[0]
assert tool_call["args"].get("answer_style")
assert tool_call["type"] == "tool_call"
def test_structured_output(self, model: BaseChatModel) -> None:
"""Test to verify structured output with a Pydantic model."""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
# Pydantic class
# Type ignoring since the interface only officially supports pydantic 1
# or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2.
# We'll need to do a pass updating the type signatures.
chat = model.with_structured_output(Joke) # type: ignore[arg-type]
result = chat.invoke("Tell me a joke about cats.")
assert isinstance(result, Joke)
for chunk in chat.stream("Tell me a joke about cats."):
assert isinstance(chunk, Joke)
# Schema
chat = model.with_structured_output(Joke.model_json_schema())
result = chat.invoke("Tell me a joke about cats.")
assert isinstance(result, dict)
assert set(result.keys()) == {"setup", "punchline"}
for chunk in chat.stream("Tell me a joke about cats."):
assert isinstance(chunk, dict)
assert isinstance(chunk, dict) # for mypy
assert set(chunk.keys()) == {"setup", "punchline"}
async def test_structured_output_async(self, model: BaseChatModel) -> None:
"""Test to verify structured output with a Pydantic model."""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
# Pydantic class
# Type ignoring since the interface only officially supports pydantic 1
# or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2.
# We'll need to do a pass updating the type signatures.
chat = model.with_structured_output(Joke) # type: ignore[arg-type]
result = await chat.ainvoke("Tell me a joke about cats.")
assert isinstance(result, Joke)
async for chunk in chat.astream("Tell me a joke about cats."):
assert isinstance(chunk, Joke)
# Schema
chat = model.with_structured_output(Joke.model_json_schema())
result = await chat.ainvoke("Tell me a joke about cats.")
assert isinstance(result, dict)
assert set(result.keys()) == {"setup", "punchline"}
async for chunk in chat.astream("Tell me a joke about cats."):
assert isinstance(chunk, dict)
assert isinstance(chunk, dict) # for mypy
assert set(chunk.keys()) == {"setup", "punchline"}
@pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Test requires pydantic 2.")
def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None:
"""Test to verify compatibility with pydantic.v1.BaseModel.
pydantic.v1.BaseModel is available in the pydantic 2 package.
"""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
class Joke(BaseModelV1): # Uses langchain_core.pydantic_v1.BaseModel
"""Joke to tell user."""
setup: str = FieldV1(description="question to set up a joke")
punchline: str = FieldV1(description="answer to resolve the joke")
# Pydantic class
chat = model.with_structured_output(Joke)
result = chat.invoke("Tell me a joke about cats.")
assert isinstance(result, Joke)
for chunk in chat.stream("Tell me a joke about cats."):
assert isinstance(chunk, Joke)
# Schema
chat = model.with_structured_output(Joke.schema())
result = chat.invoke("Tell me a joke about cats.")
assert isinstance(result, dict)
assert set(result.keys()) == {"setup", "punchline"}
for chunk in chat.stream("Tell me a joke about cats."):
assert isinstance(chunk, dict)
assert isinstance(chunk, dict) # for mypy
assert set(chunk.keys()) == {"setup", "punchline"}
def test_structured_output_optional_param(self, model: BaseChatModel) -> None:
"""Test to verify structured output with an optional param."""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="question to set up a joke")
punchline: Optional[str] = Field(
default=None, description="answer to resolve the joke"
)
chat = model.with_structured_output(Joke) # type: ignore[arg-type]
setup_result = chat.invoke(
"Give me the setup to a joke about cats, no punchline."
)
assert isinstance(setup_result, Joke)
joke_result = chat.invoke("Give me a joke about cats, include the punchline.")
assert isinstance(joke_result, Joke)
def test_tool_message_histories_string_content(self, model: BaseChatModel) -> None:
"""
Test that message histories are compatible with string tool contents
(e.g. OpenAI).
"""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
model_with_tools = model.bind_tools([my_adder_tool])
function_name = "my_adder_tool"
function_args = {"a": "1", "b": "2"}
messages_string_content = [
HumanMessage("What is 1 + 2"),
# string content (e.g. OpenAI)
AIMessage(
"",
tool_calls=[
{
"name": function_name,
"args": function_args,
"id": "abc123",
"type": "tool_call",
},
],
),
ToolMessage(
json.dumps({"result": 3}),
name=function_name,
tool_call_id="abc123",
),
]
result_string_content = model_with_tools.invoke(messages_string_content)
assert isinstance(result_string_content, AIMessage)
def test_tool_message_histories_list_content(
self,
model: BaseChatModel,
) -> None:
"""
Test that message histories are compatible with list tool contents
(e.g. Anthropic).
"""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
model_with_tools = model.bind_tools([my_adder_tool])
function_name = "my_adder_tool"
function_args = {"a": 1, "b": 2}
messages_list_content = [
HumanMessage("What is 1 + 2"),
# List content (e.g., Anthropic)
AIMessage(
[
{"type": "text", "text": "some text"},
{
"type": "tool_use",
"id": "abc123",
"name": function_name,
"input": function_args,
},
],
tool_calls=[
{
"name": function_name,
"args": function_args,
"id": "abc123",
"type": "tool_call",
},
],
),
ToolMessage(
json.dumps({"result": 3}),
name=function_name,
tool_call_id="abc123",
),
]
result_list_content = model_with_tools.invoke(messages_list_content)
assert isinstance(result_list_content, AIMessage)
def test_structured_few_shot_examples(self, model: BaseChatModel) -> None:
"""
Test that model can process few-shot examples with tool calls.
"""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
model_with_tools = model.bind_tools([my_adder_tool], tool_choice="any")
function_result = json.dumps({"result": 3})
tool_schema = my_adder_tool.args_schema
assert tool_schema is not None
few_shot_messages = tool_example_to_messages(
"What is 1 + 2",
[tool_schema(a=1, b=2)],
tool_outputs=[function_result],
ai_response=function_result,
)
messages = few_shot_messages + [HumanMessage("What is 3 + 4")]
result = model_with_tools.invoke(messages)
assert isinstance(result, AIMessage)
def test_image_inputs(self, model: BaseChatModel) -> None:
if not self.supports_image_inputs:
return
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
model.invoke([message])
def test_image_tool_message(self, model: BaseChatModel) -> None:
if not self.supports_image_tool_message:
return
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
messages = [
HumanMessage("get a random image using the tool and describe the weather"),
AIMessage(
[],
tool_calls=[
{"type": "tool_call", "id": "1", "name": "random_image", "args": {}}
],
),
ToolMessage(
content=[
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
tool_call_id="1",
name="random_image",
),
]
def random_image() -> str:
"""Return a random image."""
return ""
model.bind_tools([random_image]).invoke(messages)
def test_anthropic_inputs(self, model: BaseChatModel) -> None:
if not self.supports_anthropic_inputs:
return
class color_picker(BaseModelV1):
"""Input your fav color and get a random fact about it."""
fav_color: str
human_content: List[dict] = [
{
"type": "text",
"text": "what's your favorite color in this image",
},
]
if self.supports_image_inputs:
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
human_content.append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image_data,
},
}
)
messages = [
SystemMessage("you're a good assistant"),
HumanMessage(human_content), # type: ignore[arg-type]
AIMessage(
[
{"type": "text", "text": "Hmm let me think about that"},
{
"type": "tool_use",
"input": {"fav_color": "green"},
"id": "foo",
"name": "color_picker",
},
]
),
HumanMessage(
[
{
"type": "tool_result",
"tool_use_id": "foo",
"content": [
{
"type": "text",
"text": "green is a great pick! that's my sister's favorite color", # noqa: E501
}
],
"is_error": False,
},
{"type": "text", "text": "what's my sister's favorite color"},
]
),
]
model.bind_tools([color_picker]).invoke(messages)
def test_tool_message_error_status(self, model: BaseChatModel) -> None:
"""Test that ToolMessage with status='error' can be handled."""
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
model_with_tools = model.bind_tools([my_adder_tool])
messages = [
HumanMessage("What is 1 + 2"),
AIMessage(
"",
tool_calls=[
{
"name": "my_adder_tool",
"args": {"a": 1},
"id": "abc123",
"type": "tool_call",
},
],
),
ToolMessage(
"Error: Missing required argument 'b'.",
name="my_adder_tool",
tool_call_id="abc123",
status="error",
),
]
result = model_with_tools.invoke(messages)
assert isinstance(result, AIMessage)
def test_message_with_name(self, model: BaseChatModel) -> None:
result = model.invoke([HumanMessage("hello", name="example_user")])
assert result is not None
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def invoke_with_audio_input(self, *, stream: bool = False) -> AIMessage:
raise NotImplementedError()
def invoke_with_audio_output(self, *, stream: bool = False) -> AIMessage:
raise NotImplementedError()
def invoke_with_reasoning_output(self, *, stream: bool = False) -> AIMessage:
raise NotImplementedError()
def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage:
raise NotImplementedError()
def invoke_with_cache_creation_input(self, *, stream: bool = False) -> AIMessage:
raise NotImplementedError()