mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-02 21:23:32 +00:00
…tch]: import models from community ran ```bash git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g" git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g" git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g" git checkout master libs/langchain/tests/unit_tests/llms git checkout master libs/langchain/tests/unit_tests/chat_models git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py make format cd libs/langchain; make format cd ../experimental; make format cd ../core; make format ```
20 lines
613 B
Plaintext
20 lines
613 B
Plaintext
# Hazy Research
|
|
|
|
This page covers how to use the Hazy Research ecosystem within LangChain.
|
|
It is broken into two parts: installation and setup, and then references to specific Hazy Research wrappers.
|
|
|
|
## Installation and Setup
|
|
- To use the `manifest`, install it with `pip install manifest-ml`
|
|
|
|
## Wrappers
|
|
|
|
### LLM
|
|
|
|
There exists an LLM wrapper around Hazy Research's `manifest` library.
|
|
`manifest` is a python library which is itself a wrapper around many model providers, and adds in caching, history, and more.
|
|
|
|
To use this wrapper:
|
|
```python
|
|
from langchain_community.llms.manifest import ManifestWrapper
|
|
```
|