mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-16 12:32:06 +00:00
- `llm(prompt)` -> `llm.invoke(prompt)` - `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`) - `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt, config={"callbacks": callbacks})` - `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
138 lines
4.4 KiB
Plaintext
138 lines
4.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "raw",
|
|
"metadata": {},
|
|
"source": [
|
|
"---\n",
|
|
"sidebar_label: Alibaba Cloud PAI EAS\n",
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Alibaba Cloud PAI EAS\n",
|
|
"\n",
|
|
">[Alibaba Cloud PAI (Platform for AI)](https://www.alibabacloud.com/help/en/pai/?spm=a2c63.p38356.0.0.c26a426ckrxUwZ) is a lightweight and cost-efficient machine learning platform that uses cloud-native technologies. It provides you with an end-to-end modelling service. It accelerates model training based on tens of billions of features and hundreds of billions of samples in more than 100 scenarios.\n",
|
|
"\n",
|
|
">[Machine Learning Platform for AI of Alibaba Cloud](https://www.alibabacloud.com/help/en/machine-learning-platform-for-ai/latest/what-is-machine-learning-pai) is a machine learning or deep learning engineering platform intended for enterprises and developers. It provides easy-to-use, cost-effective, high-performance, and easy-to-scale plug-ins that can be applied to various industry scenarios. With over 140 built-in optimization algorithms, `Machine Learning Platform for AI` provides whole-process AI engineering capabilities including data labelling (`PAI-iTAG`), model building (`PAI-Designer` and `PAI-DSW`), model training (`PAI-DLC`), compilation optimization, and inference deployment (`PAI-EAS`).\n",
|
|
">\n",
|
|
">`PAI-EAS` supports different types of hardware resources, including CPUs and GPUs, and features high throughput and low latency. It allows you to deploy large-scale complex models with a few clicks and perform elastic scale-ins and scale-outs in real-time. It also provides a comprehensive O&M and monitoring system."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup EAS Service\n",
|
|
"\n",
|
|
"Set up environment variables to init EAS service URL and token.\n",
|
|
"Use [this document](https://www.alibabacloud.com/help/en/pai/user-guide/service-deployment/) for more information.\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"export EAS_SERVICE_URL=XXX\n",
|
|
"export EAS_SERVICE_TOKEN=XXX\n",
|
|
"```\n",
|
|
"Another option is to use this code:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"from langchain_community.chat_models import PaiEasChatEndpoint\n",
|
|
"from langchain_core.language_models.chat_models import HumanMessage\n",
|
|
"\n",
|
|
"os.environ[\"EAS_SERVICE_URL\"] = \"Your_EAS_Service_URL\"\n",
|
|
"os.environ[\"EAS_SERVICE_TOKEN\"] = \"Your_EAS_Service_Token\"\n",
|
|
"chat = PaiEasChatEndpoint(\n",
|
|
" eas_service_url=os.environ[\"EAS_SERVICE_URL\"],\n",
|
|
" eas_service_token=os.environ[\"EAS_SERVICE_TOKEN\"],\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Run Chat Model\n",
|
|
"\n",
|
|
"You can use the default settings to call EAS service as follows:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"output = chat.invoke([HumanMessage(content=\"write a funny joke\")])\n",
|
|
"print(\"output:\", output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Or, call EAS service with new inference params:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"kwargs = {\"temperature\": 0.8, \"top_p\": 0.8, \"top_k\": 5}\n",
|
|
"output = chat.invoke([HumanMessage(content=\"write a funny joke\")], **kwargs)\n",
|
|
"print(\"output:\", output)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Or, run a stream call to get a stream response:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"outputs = chat.stream([HumanMessage(content=\"hi\")], streaming=True)\n",
|
|
"for output in outputs:\n",
|
|
" print(\"stream output:\", output)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|