mirror of
https://github.com/hwchase17/langchain.git
synced 2025-11-21 14:10:56 +00:00
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path
import toml
import subprocess
import re
ROOT_DIR = Path(__file__).parents[1]
def main():
for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
print(path)
with open(path, "rb") as f:
pyproject = tomllib.load(f)
try:
pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
"^1.10"
)
pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
"^0.5"
)
except KeyError:
continue
with open(path, "w") as f:
toml.dump(pyproject, f)
cwd = "/".join(path.split("/")[:-1])
completed = subprocess.run(
"poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
logs = completed.stdout.split("\n")
to_ignore = {}
for l in logs:
if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
path, line_no, error_type = re.match(
"^(.*)\:(\d+)\: error:.*\[(.*)\]", l
).groups()
if (path, line_no) in to_ignore:
to_ignore[(path, line_no)].append(error_type)
else:
to_ignore[(path, line_no)] = [error_type]
print(len(to_ignore))
for (error_path, line_no), error_types in to_ignore.items():
all_errors = ", ".join(error_types)
full_path = f"{cwd}/{error_path}"
try:
with open(full_path, "r") as f:
file_lines = f.readlines()
except FileNotFoundError:
continue
file_lines[int(line_no) - 1] = (
file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n"
)
with open(full_path, "w") as f:
f.write("".join(file_lines))
subprocess.run(
"poetry run ruff format .; poetry run ruff --select I --fix .",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
if __name__ == "__main__":
main()
```
68 lines
1.8 KiB
Python
68 lines
1.8 KiB
Python
"""Util that calls Golden."""
|
|
|
|
import json
|
|
from typing import Dict, Optional
|
|
|
|
import requests
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
GOLDEN_BASE_URL = "https://golden.com"
|
|
GOLDEN_TIMEOUT = 5000
|
|
|
|
|
|
class GoldenQueryAPIWrapper(BaseModel):
|
|
"""Wrapper for Golden.
|
|
|
|
Docs for using:
|
|
|
|
1. Go to https://golden.com and sign up for an account
|
|
2. Get your API Key from https://golden.com/settings/api
|
|
3. Save your API Key into GOLDEN_API_KEY env variable
|
|
|
|
"""
|
|
|
|
golden_api_key: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
golden_api_key = get_from_dict_or_env(
|
|
values, "golden_api_key", "GOLDEN_API_KEY"
|
|
)
|
|
values["golden_api_key"] = golden_api_key
|
|
|
|
return values
|
|
|
|
def run(self, query: str) -> str:
|
|
"""Run query through Golden Query API and return the JSON raw result."""
|
|
|
|
headers = {"apikey": self.golden_api_key or ""}
|
|
|
|
response = requests.post(
|
|
f"{GOLDEN_BASE_URL}/api/v2/public/queries/",
|
|
json={"prompt": query},
|
|
headers=headers,
|
|
timeout=GOLDEN_TIMEOUT,
|
|
)
|
|
if response.status_code != 201:
|
|
return response.text
|
|
|
|
content = json.loads(response.content)
|
|
query_id = content["id"]
|
|
|
|
response = requests.get(
|
|
(
|
|
f"{GOLDEN_BASE_URL}/api/v2/public/queries/{query_id}/results/"
|
|
"?pageSize=10"
|
|
),
|
|
headers=headers,
|
|
timeout=GOLDEN_TIMEOUT,
|
|
)
|
|
return response.text
|