mirror of
https://github.com/hwchase17/langchain.git
synced 2025-11-24 01:22:13 +00:00
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path
import toml
import subprocess
import re
ROOT_DIR = Path(__file__).parents[1]
def main():
for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
print(path)
with open(path, "rb") as f:
pyproject = tomllib.load(f)
try:
pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
"^1.10"
)
pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
"^0.5"
)
except KeyError:
continue
with open(path, "w") as f:
toml.dump(pyproject, f)
cwd = "/".join(path.split("/")[:-1])
completed = subprocess.run(
"poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
logs = completed.stdout.split("\n")
to_ignore = {}
for l in logs:
if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
path, line_no, error_type = re.match(
"^(.*)\:(\d+)\: error:.*\[(.*)\]", l
).groups()
if (path, line_no) in to_ignore:
to_ignore[(path, line_no)].append(error_type)
else:
to_ignore[(path, line_no)] = [error_type]
print(len(to_ignore))
for (error_path, line_no), error_types in to_ignore.items():
all_errors = ", ".join(error_types)
full_path = f"{cwd}/{error_path}"
try:
with open(full_path, "r") as f:
file_lines = f.readlines()
except FileNotFoundError:
continue
file_lines[int(line_no) - 1] = (
file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n"
)
with open(full_path, "w") as f:
f.write("".join(file_lines))
subprocess.run(
"poetry run ruff format .; poetry run ruff --select I --fix .",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
if __name__ == "__main__":
main()
```
72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
"""Test EdenAI API wrapper."""
|
|
|
|
from typing import List
|
|
|
|
import pytest
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
|
|
from langchain_community.chat_models.edenai import (
|
|
ChatEdenAI,
|
|
)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_edenai() -> None:
|
|
"""Test ChatEdenAI wrapper."""
|
|
chat = ChatEdenAI( # type: ignore[call-arg]
|
|
provider="openai", model="gpt-3.5-turbo", temperature=0, max_tokens=1000
|
|
)
|
|
message = HumanMessage(content="Who are you ?")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_edenai_generate() -> None:
|
|
"""Test generate method of edenai."""
|
|
chat = ChatEdenAI(provider="google") # type: ignore[call-arg]
|
|
chat_messages: List[List[BaseMessage]] = [
|
|
[HumanMessage(content="What is the meaning of life?")]
|
|
]
|
|
messages_copy = [messages.copy() for messages in chat_messages]
|
|
result: LLMResult = chat.generate(chat_messages)
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
assert chat_messages == messages_copy
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_edenai_async_generate() -> None:
|
|
"""Test async generation."""
|
|
chat = ChatEdenAI(provider="google", max_tokens=50) # type: ignore[call-arg]
|
|
message = HumanMessage(content="Hello")
|
|
result: LLMResult = await chat.agenerate([[message], [message]])
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_edenai_streaming() -> None:
|
|
"""Test streaming EdenAI chat."""
|
|
llm = ChatEdenAI(provider="openai", max_tokens=50) # type: ignore[call-arg]
|
|
|
|
for chunk in llm.stream("Generate a high fantasy story."):
|
|
assert isinstance(chunk.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_edenai_astream() -> None:
|
|
"""Test streaming from EdenAI."""
|
|
llm = ChatEdenAI(provider="openai", max_tokens=50) # type: ignore[call-arg]
|
|
|
|
async for token in llm.astream("Generate a high fantasy story."):
|
|
assert isinstance(token.content, str)
|