Files
langchain/libs/partners/mongodb/tests/integration_tests/test_cache.py
Bagatur a0c2281540 infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

161 lines
4.8 KiB
Python

import os
import uuid
from typing import Any, List, Union
import pytest # type: ignore[import-not-found]
from langchain_core.caches import BaseCache
from langchain_core.globals import get_llm_cache, set_llm_cache
from langchain_core.load.dump import dumps
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
from langchain_mongodb.cache import MongoDBAtlasSemanticCache, MongoDBCache
from tests.utils import ConsistentFakeEmbeddings, FakeChatModel, FakeLLM
CONN_STRING = os.environ.get("MONGODB_ATLAS_URI")
INDEX_NAME = "langchain-test-index-semantic-cache"
DATABASE = "langchain_test_db"
COLLECTION = "langchain_test_cache"
def random_string() -> str:
return str(uuid.uuid4())
def llm_cache(cls: Any) -> BaseCache:
set_llm_cache(
cls(
embedding=ConsistentFakeEmbeddings(dimensionality=1536),
connection_string=CONN_STRING,
collection_name=COLLECTION,
database_name=DATABASE,
index_name=INDEX_NAME,
score_threshold=0.5,
wait_until_ready=True,
)
)
assert get_llm_cache()
return get_llm_cache()
def _execute_test(
prompt: Union[str, List[BaseMessage]],
llm: Union[str, FakeLLM, FakeChatModel],
response: List[Generation],
) -> None:
# Fabricate an LLM String
if not isinstance(llm, str):
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
else:
llm_string = llm
# If the prompt is a str then we should pass just the string
dumped_prompt: str = prompt if isinstance(prompt, str) else dumps(prompt)
# Update the cache
get_llm_cache().update(dumped_prompt, llm_string, response)
# Retrieve the cached result through 'generate' call
output: Union[List[Generation], LLMResult, None]
expected_output: Union[List[Generation], LLMResult]
if isinstance(llm, str):
output = get_llm_cache().lookup(dumped_prompt, llm) # type: ignore
expected_output = response
else:
output = llm.generate([prompt]) # type: ignore
expected_output = LLMResult(
generations=[response],
llm_output={},
)
assert output == expected_output # type: ignore
@pytest.mark.parametrize(
"prompt, llm, response",
[
("foo", "bar", [Generation(text="fizz")]),
("foo", FakeLLM(), [Generation(text="fizz")]),
(
[HumanMessage(content="foo")],
FakeChatModel(),
[ChatGeneration(message=AIMessage(content="foo"))],
),
],
ids=[
"plain_cache",
"cache_with_llm",
"cache_with_chat",
],
)
@pytest.mark.parametrize("cacher", [MongoDBCache, MongoDBAtlasSemanticCache])
@pytest.mark.parametrize("remove_score", [True, False])
def test_mongodb_cache(
remove_score: bool,
cacher: Union[MongoDBCache, MongoDBAtlasSemanticCache],
prompt: Union[str, List[BaseMessage]],
llm: Union[str, FakeLLM, FakeChatModel],
response: List[Generation],
) -> None:
llm_cache(cacher)
if remove_score:
get_llm_cache().score_threshold = None # type: ignore
try:
_execute_test(prompt, llm, response)
finally:
get_llm_cache().clear()
@pytest.mark.parametrize(
"prompts, generations",
[
# Single prompt, single generation
([random_string()], [[random_string()]]),
# Single prompt, multiple generations
([random_string()], [[random_string(), random_string()]]),
# Single prompt, multiple generations
([random_string()], [[random_string(), random_string(), random_string()]]),
# Multiple prompts, multiple generations
(
[random_string(), random_string()],
[[random_string()], [random_string(), random_string()]],
),
],
ids=[
"single_prompt_single_generation",
"single_prompt_two_generations",
"single_prompt_three_generations",
"multiple_prompts_multiple_generations",
],
)
def test_mongodb_atlas_cache_matrix(
prompts: List[str],
generations: List[List[str]],
) -> None:
llm_cache(MongoDBAtlasSemanticCache)
llm = FakeLLM()
# Fabricate an LLM String
params = llm.dict()
params["stop"] = None
llm_string = str(sorted([(k, v) for k, v in params.items()]))
llm_generations = [
[
Generation(text=generation, generation_info=params)
for generation in prompt_i_generations
]
for prompt_i_generations in generations
]
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
_execute_test(prompt_i, llm_string, llm_generations_i)
assert llm.generate(prompts) == LLMResult(
generations=llm_generations, llm_output={}
)
get_llm_cache().clear()