mirror of
https://github.com/hwchase17/langchain.git
synced 2025-11-21 05:27:56 +00:00
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path
import toml
import subprocess
import re
ROOT_DIR = Path(__file__).parents[1]
def main():
for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
print(path)
with open(path, "rb") as f:
pyproject = tomllib.load(f)
try:
pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
"^1.10"
)
pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
"^0.5"
)
except KeyError:
continue
with open(path, "w") as f:
toml.dump(pyproject, f)
cwd = "/".join(path.split("/")[:-1])
completed = subprocess.run(
"poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
logs = completed.stdout.split("\n")
to_ignore = {}
for l in logs:
if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
path, line_no, error_type = re.match(
"^(.*)\:(\d+)\: error:.*\[(.*)\]", l
).groups()
if (path, line_no) in to_ignore:
to_ignore[(path, line_no)].append(error_type)
else:
to_ignore[(path, line_no)] = [error_type]
print(len(to_ignore))
for (error_path, line_no), error_types in to_ignore.items():
all_errors = ", ".join(error_types)
full_path = f"{cwd}/{error_path}"
try:
with open(full_path, "r") as f:
file_lines = f.readlines()
except FileNotFoundError:
continue
file_lines[int(line_no) - 1] = (
file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n"
)
with open(full_path, "w") as f:
f.write("".join(file_lines))
subprocess.run(
"poetry run ruff format .; poetry run ruff --select I --fix .",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
if __name__ == "__main__":
main()
```
161 lines
4.8 KiB
Python
161 lines
4.8 KiB
Python
import os
|
|
import uuid
|
|
from typing import Any, List, Union
|
|
|
|
import pytest # type: ignore[import-not-found]
|
|
from langchain_core.caches import BaseCache
|
|
from langchain_core.globals import get_llm_cache, set_llm_cache
|
|
from langchain_core.load.dump import dumps
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
|
|
|
|
from langchain_mongodb.cache import MongoDBAtlasSemanticCache, MongoDBCache
|
|
from tests.utils import ConsistentFakeEmbeddings, FakeChatModel, FakeLLM
|
|
|
|
CONN_STRING = os.environ.get("MONGODB_ATLAS_URI")
|
|
INDEX_NAME = "langchain-test-index-semantic-cache"
|
|
DATABASE = "langchain_test_db"
|
|
COLLECTION = "langchain_test_cache"
|
|
|
|
|
|
def random_string() -> str:
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
def llm_cache(cls: Any) -> BaseCache:
|
|
set_llm_cache(
|
|
cls(
|
|
embedding=ConsistentFakeEmbeddings(dimensionality=1536),
|
|
connection_string=CONN_STRING,
|
|
collection_name=COLLECTION,
|
|
database_name=DATABASE,
|
|
index_name=INDEX_NAME,
|
|
score_threshold=0.5,
|
|
wait_until_ready=True,
|
|
)
|
|
)
|
|
assert get_llm_cache()
|
|
return get_llm_cache()
|
|
|
|
|
|
def _execute_test(
|
|
prompt: Union[str, List[BaseMessage]],
|
|
llm: Union[str, FakeLLM, FakeChatModel],
|
|
response: List[Generation],
|
|
) -> None:
|
|
# Fabricate an LLM String
|
|
|
|
if not isinstance(llm, str):
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
else:
|
|
llm_string = llm
|
|
|
|
# If the prompt is a str then we should pass just the string
|
|
dumped_prompt: str = prompt if isinstance(prompt, str) else dumps(prompt)
|
|
|
|
# Update the cache
|
|
get_llm_cache().update(dumped_prompt, llm_string, response)
|
|
|
|
# Retrieve the cached result through 'generate' call
|
|
output: Union[List[Generation], LLMResult, None]
|
|
expected_output: Union[List[Generation], LLMResult]
|
|
|
|
if isinstance(llm, str):
|
|
output = get_llm_cache().lookup(dumped_prompt, llm) # type: ignore
|
|
expected_output = response
|
|
else:
|
|
output = llm.generate([prompt]) # type: ignore
|
|
expected_output = LLMResult(
|
|
generations=[response],
|
|
llm_output={},
|
|
)
|
|
|
|
assert output == expected_output # type: ignore
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"prompt, llm, response",
|
|
[
|
|
("foo", "bar", [Generation(text="fizz")]),
|
|
("foo", FakeLLM(), [Generation(text="fizz")]),
|
|
(
|
|
[HumanMessage(content="foo")],
|
|
FakeChatModel(),
|
|
[ChatGeneration(message=AIMessage(content="foo"))],
|
|
),
|
|
],
|
|
ids=[
|
|
"plain_cache",
|
|
"cache_with_llm",
|
|
"cache_with_chat",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("cacher", [MongoDBCache, MongoDBAtlasSemanticCache])
|
|
@pytest.mark.parametrize("remove_score", [True, False])
|
|
def test_mongodb_cache(
|
|
remove_score: bool,
|
|
cacher: Union[MongoDBCache, MongoDBAtlasSemanticCache],
|
|
prompt: Union[str, List[BaseMessage]],
|
|
llm: Union[str, FakeLLM, FakeChatModel],
|
|
response: List[Generation],
|
|
) -> None:
|
|
llm_cache(cacher)
|
|
if remove_score:
|
|
get_llm_cache().score_threshold = None # type: ignore
|
|
try:
|
|
_execute_test(prompt, llm, response)
|
|
finally:
|
|
get_llm_cache().clear()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"prompts, generations",
|
|
[
|
|
# Single prompt, single generation
|
|
([random_string()], [[random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string(), random_string()]]),
|
|
# Multiple prompts, multiple generations
|
|
(
|
|
[random_string(), random_string()],
|
|
[[random_string()], [random_string(), random_string()]],
|
|
),
|
|
],
|
|
ids=[
|
|
"single_prompt_single_generation",
|
|
"single_prompt_two_generations",
|
|
"single_prompt_three_generations",
|
|
"multiple_prompts_multiple_generations",
|
|
],
|
|
)
|
|
def test_mongodb_atlas_cache_matrix(
|
|
prompts: List[str],
|
|
generations: List[List[str]],
|
|
) -> None:
|
|
llm_cache(MongoDBAtlasSemanticCache)
|
|
llm = FakeLLM()
|
|
|
|
# Fabricate an LLM String
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
|
|
llm_generations = [
|
|
[
|
|
Generation(text=generation, generation_info=params)
|
|
for generation in prompt_i_generations
|
|
]
|
|
for prompt_i_generations in generations
|
|
]
|
|
|
|
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
|
|
_execute_test(prompt_i, llm_string, llm_generations_i)
|
|
assert llm.generate(prompts) == LLMResult(
|
|
generations=llm_generations, llm_output={}
|
|
)
|
|
get_llm_cache().clear()
|