mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-28 06:10:30 +00:00 
			
		
		
		
	Co-authored-by: Ayan Bandyopadhyay <ayanb9440@gmail.com> Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
		
			
				
	
	
		
			135 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Psychic\n",
 | |
|     "This notebook covers how to load documents from `Psychic`. See [here](../../../../ecosystem/psychic.md) for more details.\n",
 | |
|     "\n",
 | |
|     "## Prerequisites\n",
 | |
|     "1. Follow the Quick Start section in [this document](../../../../ecosystem/psychic.md)\n",
 | |
|     "2. Log into the [Psychic dashboard](https://dashboard.psychic.dev/) and get your secret key\n",
 | |
|     "3. Install the frontend react library into your web app and have a user authenticate a connection. The connection will be created using the connection id that you specify."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Loading documents\n",
 | |
|     "\n",
 | |
|     "Use the `PsychicLoader` class to load in documents from a connection. Each connection has a connector id (corresponding to the SaaS app that was connected) and a connection id (which you passed in to the frontend library)."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\n",
 | |
|       "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
 | |
|       "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "# Uncomment this to install psychicapi if you don't already have it installed\n",
 | |
|     "!poetry run pip -q install psychicapi"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.document_loaders import PsychicLoader\n",
 | |
|     "from psychicapi import ConnectorId\n",
 | |
|     "\n",
 | |
|     "# Create a document loader for google drive. We can also load from other connectors by setting the connector_id to the appropriate value e.g. ConnectorId.notion.value\n",
 | |
|     "# This loader uses our test credentials\n",
 | |
|     "google_drive_loader = PsychicLoader(\n",
 | |
|     "    api_key=\"7ddb61c1-8b6a-4d31-a58e-30d1c9ea480e\",\n",
 | |
|     "    connector_id=ConnectorId.gdrive.value,\n",
 | |
|     "    connection_id=\"google-test\"\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "documents = google_drive_loader.load()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Converting the docs to embeddings \n",
 | |
|     "\n",
 | |
|     "We can now convert these documents into embeddings and store them in a vector database like Chroma"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.embeddings.openai import OpenAIEmbeddings\n",
 | |
|     "from langchain.vectorstores import Chroma\n",
 | |
|     "from langchain.text_splitter import CharacterTextSplitter\n",
 | |
|     "from langchain.llms import OpenAI\n",
 | |
|     "from langchain.chains import RetrievalQAWithSourcesChain\n",
 | |
|     "\n"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
 | |
|     "texts = text_splitter.split_documents(documents)\n",
 | |
|     "\n",
 | |
|     "embeddings = OpenAIEmbeddings()\n",
 | |
|     "docsearch = Chroma.from_documents(texts, embeddings)\n",
 | |
|     "chain = RetrievalQAWithSourcesChain.from_chain_type(OpenAI(temperature=0), chain_type=\"stuff\", retriever=docsearch.as_retriever())\n",
 | |
|     "chain({\"question\": \"what is psychic?\"}, return_only_outputs=True)"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.8"
 | |
|   },
 | |
|   "orig_nbformat": 4,
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 2
 | |
| }
 |