mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-01 12:38:45 +00:00
See https://docs.astral.sh/ruff/rules/blanket-type-ignore/ --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
317 lines
12 KiB
Python
317 lines
12 KiB
Python
"""Question answering over a graph."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
SystemMessage,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import (
|
|
BasePromptTemplate,
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
MessagesPlaceholder,
|
|
)
|
|
from langchain_core.runnables import Runnable
|
|
from pydantic import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
MEMGRAPH_GENERATION_PROMPT,
|
|
MEMGRAPH_QA_PROMPT,
|
|
)
|
|
from langchain_community.graphs.memgraph_graph import MemgraphGraph
|
|
|
|
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
|
|
|
|
FUNCTION_RESPONSE_SYSTEM = """You are an assistant that helps to form nice and human
|
|
understandable answers based on the provided information from tools.
|
|
Do not add any other information that wasn't present in the tools, and use
|
|
very concise style in interpreting results!
|
|
"""
|
|
|
|
|
|
def extract_cypher(text: str) -> str:
|
|
"""Extract Cypher code from a text.
|
|
|
|
Args:
|
|
text: Text to extract Cypher code from.
|
|
|
|
Returns:
|
|
Cypher code extracted from the text.
|
|
"""
|
|
# The pattern to find Cypher code enclosed in triple backticks
|
|
pattern = r"```(.*?)```"
|
|
|
|
# Find all matches in the input text
|
|
matches = re.findall(pattern, text, re.DOTALL)
|
|
|
|
return matches[0] if matches else text
|
|
|
|
|
|
def get_function_response(
|
|
question: str, context: List[Dict[str, Any]]
|
|
) -> List[BaseMessage]:
|
|
TOOL_ID = "call_H7fABDuzEau48T10Qn0Lsh0D"
|
|
messages = [
|
|
AIMessage(
|
|
content="",
|
|
additional_kwargs={
|
|
"tool_calls": [
|
|
{
|
|
"id": TOOL_ID,
|
|
"function": {
|
|
"arguments": '{"question":"' + question + '"}',
|
|
"name": "GetInformation",
|
|
},
|
|
"type": "function",
|
|
}
|
|
]
|
|
},
|
|
),
|
|
ToolMessage(content=str(context), tool_call_id=TOOL_ID),
|
|
]
|
|
return messages
|
|
|
|
|
|
class MemgraphQAChain(Chain):
|
|
"""Chain for question-answering against a graph by generating Cypher statements.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
graph: MemgraphGraph = Field(exclude=True)
|
|
cypher_generation_chain: Runnable
|
|
qa_chain: Runnable
|
|
graph_schema: str
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
top_k: int = 10
|
|
"""Number of results to return from the query"""
|
|
return_intermediate_steps: bool = False
|
|
"""Whether or not to return the intermediate steps along with the final answer."""
|
|
return_direct: bool = False
|
|
"""Optional cypher validation tool"""
|
|
use_function_response: bool = False
|
|
"""Whether to wrap the database context as tool/function response"""
|
|
allow_dangerous_requests: bool = False
|
|
"""Forced user opt-in to acknowledge that the chain can make dangerous requests.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
def __init__(self, **kwargs: Any) -> None:
|
|
"""Initialize the chain."""
|
|
super().__init__(**kwargs)
|
|
if self.allow_dangerous_requests is not True:
|
|
raise ValueError(
|
|
"In order to use this chain, you must acknowledge that it can make "
|
|
"dangerous requests by setting `allow_dangerous_requests` to `True`."
|
|
"You must narrowly scope the permissions of the database connection "
|
|
"to only include necessary permissions. Failure to do so may result "
|
|
"in data corruption or loss or reading sensitive data if such data is "
|
|
"present in the database."
|
|
"Only use this chain if you understand the risks and have taken the "
|
|
"necessary precautions. "
|
|
"See https://python.langchain.com/docs/security for more information."
|
|
)
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return the output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "graph_cypher_chain"
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: Optional[BaseLanguageModel] = None,
|
|
*,
|
|
qa_prompt: Optional[BasePromptTemplate] = None,
|
|
cypher_prompt: Optional[BasePromptTemplate] = None,
|
|
cypher_llm: Optional[BaseLanguageModel] = None,
|
|
qa_llm: Optional[Union[BaseLanguageModel, Any]] = None,
|
|
qa_llm_kwargs: Optional[Dict[str, Any]] = None,
|
|
cypher_llm_kwargs: Optional[Dict[str, Any]] = None,
|
|
use_function_response: bool = False,
|
|
function_response_system: str = FUNCTION_RESPONSE_SYSTEM,
|
|
**kwargs: Any,
|
|
) -> MemgraphQAChain:
|
|
"""Initialize from LLM."""
|
|
|
|
if not cypher_llm and not llm:
|
|
raise ValueError("Either `llm` or `cypher_llm` parameters must be provided")
|
|
if not qa_llm and not llm:
|
|
raise ValueError("Either `llm` or `qa_llm` parameters must be provided")
|
|
if cypher_llm and qa_llm and llm:
|
|
raise ValueError(
|
|
"You can specify up to two of 'cypher_llm', 'qa_llm'"
|
|
", and 'llm', but not all three simultaneously."
|
|
)
|
|
if cypher_prompt and cypher_llm_kwargs:
|
|
raise ValueError(
|
|
"Specifying cypher_prompt and cypher_llm_kwargs together is"
|
|
" not allowed. Please pass prompt via cypher_llm_kwargs."
|
|
)
|
|
if qa_prompt and qa_llm_kwargs:
|
|
raise ValueError(
|
|
"Specifying qa_prompt and qa_llm_kwargs together is"
|
|
" not allowed. Please pass prompt via qa_llm_kwargs."
|
|
)
|
|
use_qa_llm_kwargs = qa_llm_kwargs if qa_llm_kwargs is not None else {}
|
|
use_cypher_llm_kwargs = (
|
|
cypher_llm_kwargs if cypher_llm_kwargs is not None else {}
|
|
)
|
|
if "prompt" not in use_qa_llm_kwargs:
|
|
use_qa_llm_kwargs["prompt"] = (
|
|
qa_prompt if qa_prompt is not None else MEMGRAPH_QA_PROMPT
|
|
)
|
|
if "prompt" not in use_cypher_llm_kwargs:
|
|
use_cypher_llm_kwargs["prompt"] = (
|
|
cypher_prompt
|
|
if cypher_prompt is not None
|
|
else MEMGRAPH_GENERATION_PROMPT
|
|
)
|
|
|
|
qa_llm = qa_llm or llm
|
|
if use_function_response:
|
|
try:
|
|
qa_llm.bind_tools({}) # type: ignore[union-attr]
|
|
response_prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
SystemMessage(content=function_response_system),
|
|
HumanMessagePromptTemplate.from_template("{question}"),
|
|
MessagesPlaceholder(variable_name="function_response"),
|
|
]
|
|
)
|
|
qa_chain = response_prompt | qa_llm | StrOutputParser() # type: ignore[operator]
|
|
except (NotImplementedError, AttributeError):
|
|
raise ValueError("Provided LLM does not support native tools/functions")
|
|
else:
|
|
qa_chain = use_qa_llm_kwargs["prompt"] | qa_llm | StrOutputParser()
|
|
|
|
prompt = use_cypher_llm_kwargs["prompt"]
|
|
llm_to_use = cypher_llm if cypher_llm is not None else llm
|
|
|
|
if prompt is not None and llm_to_use is not None:
|
|
cypher_generation_chain = prompt | llm_to_use | StrOutputParser() # type: ignore[arg-type]
|
|
else:
|
|
raise ValueError(
|
|
"Missing required components for the cypher generation chain: "
|
|
"'prompt' or 'llm'"
|
|
)
|
|
|
|
graph_schema = kwargs["graph"].get_schema
|
|
|
|
return cls(
|
|
graph_schema=graph_schema,
|
|
qa_chain=qa_chain,
|
|
cypher_generation_chain=cypher_generation_chain,
|
|
use_function_response=use_function_response,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, Any]:
|
|
"""Generate Cypher statement, use it to look up in db and answer question."""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
callbacks = _run_manager.get_child()
|
|
question = inputs[self.input_key]
|
|
args = {
|
|
"question": question,
|
|
"schema": self.graph_schema,
|
|
}
|
|
args.update(inputs)
|
|
|
|
intermediate_steps: List = []
|
|
|
|
generated_cypher = self.cypher_generation_chain.invoke(
|
|
args, callbacks=callbacks
|
|
)
|
|
# Extract Cypher code if it is wrapped in backticks
|
|
generated_cypher = extract_cypher(generated_cypher)
|
|
|
|
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
generated_cypher, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
intermediate_steps.append({"query": generated_cypher})
|
|
|
|
# Retrieve and limit the number of results
|
|
# Generated Cypher be null if query corrector identifies invalid schema
|
|
if generated_cypher:
|
|
context = self.graph.query(generated_cypher)[: self.top_k]
|
|
else:
|
|
context = []
|
|
|
|
if self.return_direct:
|
|
result = context
|
|
else:
|
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(context), color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
intermediate_steps.append({"context": context})
|
|
if self.use_function_response:
|
|
function_response = get_function_response(question, context)
|
|
result = self.qa_chain.invoke(
|
|
{"question": question, "function_response": function_response},
|
|
)
|
|
else:
|
|
result = self.qa_chain.invoke(
|
|
{"question": question, "context": context},
|
|
callbacks=callbacks,
|
|
)
|
|
|
|
chain_result: Dict[str, Any] = {"result": result}
|
|
if self.return_intermediate_steps:
|
|
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
|
|
|
|
return chain_result
|