mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-29 04:16:02 +00:00
See https://docs.astral.sh/ruff/rules/blanket-type-ignore/ --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
255 lines
8.6 KiB
Python
255 lines
8.6 KiB
Python
from __future__ import annotations
|
|
|
|
import re
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.chains.prompt_selector import ConditionalPromptSelector
|
|
from langchain_core._api.deprecation import deprecated
|
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.prompts.base import BasePromptTemplate
|
|
from pydantic import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
CYPHER_QA_PROMPT,
|
|
NEPTUNE_OPENCYPHER_GENERATION_PROMPT,
|
|
NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_PROMPT,
|
|
)
|
|
from langchain_community.graphs import BaseNeptuneGraph
|
|
|
|
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
|
|
|
|
|
|
def trim_query(query: str) -> str:
|
|
"""Trim the query to only include Cypher keywords."""
|
|
keywords = (
|
|
"CALL",
|
|
"CREATE",
|
|
"DELETE",
|
|
"DETACH",
|
|
"LIMIT",
|
|
"MATCH",
|
|
"MERGE",
|
|
"OPTIONAL",
|
|
"ORDER",
|
|
"REMOVE",
|
|
"RETURN",
|
|
"SET",
|
|
"SKIP",
|
|
"UNWIND",
|
|
"WITH",
|
|
"WHERE",
|
|
"//",
|
|
)
|
|
|
|
lines = query.split("\n")
|
|
new_query = ""
|
|
|
|
for line in lines:
|
|
if line.strip().upper().startswith(keywords):
|
|
new_query += line + "\n"
|
|
|
|
return new_query
|
|
|
|
|
|
def extract_cypher(text: str) -> str:
|
|
"""Extract Cypher code from text using Regex."""
|
|
# The pattern to find Cypher code enclosed in triple backticks
|
|
pattern = r"```(.*?)```"
|
|
|
|
# Find all matches in the input text
|
|
matches = re.findall(pattern, text, re.DOTALL)
|
|
|
|
return matches[0] if matches else text
|
|
|
|
|
|
def use_simple_prompt(llm: BaseLanguageModel) -> bool:
|
|
"""Decides whether to use the simple prompt"""
|
|
if llm._llm_type and "anthropic" in llm._llm_type: # type: ignore[attr-defined]
|
|
return True
|
|
|
|
# Bedrock anthropic
|
|
if hasattr(llm, "model_id") and "anthropic" in llm.model_id:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
PROMPT_SELECTOR = ConditionalPromptSelector(
|
|
default_prompt=NEPTUNE_OPENCYPHER_GENERATION_PROMPT,
|
|
conditionals=[(use_simple_prompt, NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_PROMPT)],
|
|
)
|
|
|
|
|
|
@deprecated(
|
|
since="0.3.15",
|
|
removal="1.0",
|
|
alternative_import="langchain_aws.create_neptune_opencypher_qa_chain",
|
|
)
|
|
class NeptuneOpenCypherQAChain(Chain):
|
|
"""Chain for question-answering against a Neptune graph
|
|
by generating openCypher statements.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
chain = NeptuneOpenCypherQAChain.from_llm(
|
|
llm=llm,
|
|
graph=graph
|
|
)
|
|
response = chain.run(query)
|
|
"""
|
|
|
|
graph: BaseNeptuneGraph = Field(exclude=True)
|
|
cypher_generation_chain: LLMChain
|
|
qa_chain: LLMChain
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
top_k: int = 10
|
|
return_intermediate_steps: bool = False
|
|
"""Whether or not to return the intermediate steps along with the final answer."""
|
|
return_direct: bool = False
|
|
"""Whether or not to return the result of querying the graph directly."""
|
|
extra_instructions: Optional[str] = None
|
|
"""Extra instructions by the appended to the query generation prompt."""
|
|
|
|
allow_dangerous_requests: bool = False
|
|
"""Forced user opt-in to acknowledge that the chain can make dangerous requests.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
def __init__(self, **kwargs: Any) -> None:
|
|
"""Initialize the chain."""
|
|
super().__init__(**kwargs)
|
|
if self.allow_dangerous_requests is not True:
|
|
raise ValueError(
|
|
"In order to use this chain, you must acknowledge that it can make "
|
|
"dangerous requests by setting `allow_dangerous_requests` to `True`."
|
|
"You must narrowly scope the permissions of the database connection "
|
|
"to only include necessary permissions. Failure to do so may result "
|
|
"in data corruption or loss or reading sensitive data if such data is "
|
|
"present in the database."
|
|
"Only use this chain if you understand the risks and have taken the "
|
|
"necessary precautions. "
|
|
"See https://python.langchain.com/docs/security for more information."
|
|
)
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return the output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
*,
|
|
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
|
|
cypher_prompt: Optional[BasePromptTemplate] = None,
|
|
extra_instructions: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> NeptuneOpenCypherQAChain:
|
|
"""Initialize from LLM."""
|
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
|
|
|
_cypher_prompt = cypher_prompt or PROMPT_SELECTOR.get_prompt(llm)
|
|
cypher_generation_chain = LLMChain(llm=llm, prompt=_cypher_prompt)
|
|
|
|
return cls(
|
|
qa_chain=qa_chain,
|
|
cypher_generation_chain=cypher_generation_chain,
|
|
extra_instructions=extra_instructions,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, Any]:
|
|
"""Generate Cypher statement, use it to look up in db and answer question."""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
callbacks = _run_manager.get_child()
|
|
question = inputs[self.input_key]
|
|
|
|
intermediate_steps: List = []
|
|
|
|
generated_cypher = self.cypher_generation_chain.run(
|
|
{
|
|
"question": question,
|
|
"schema": self.graph.get_schema,
|
|
"extra_instructions": self.extra_instructions or "",
|
|
},
|
|
callbacks=callbacks,
|
|
)
|
|
|
|
# Extract Cypher code if it is wrapped in backticks
|
|
generated_cypher = extract_cypher(generated_cypher)
|
|
generated_cypher = trim_query(generated_cypher)
|
|
|
|
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
generated_cypher, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
intermediate_steps.append({"query": generated_cypher})
|
|
|
|
context = self.graph.query(generated_cypher)
|
|
|
|
if self.return_direct:
|
|
final_result = context
|
|
else:
|
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(context), color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
intermediate_steps.append({"context": context})
|
|
|
|
result = self.qa_chain(
|
|
{"question": question, "context": context},
|
|
callbacks=callbacks,
|
|
)
|
|
final_result = result[self.qa_chain.output_key]
|
|
|
|
chain_result: Dict[str, Any] = {self.output_key: final_result}
|
|
if self.return_intermediate_steps:
|
|
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
|
|
|
|
return chain_result
|