mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-28 11:55:21 +00:00
See https://docs.astral.sh/ruff/rules/blanket-type-ignore/ --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
866 lines
32 KiB
Python
866 lines
32 KiB
Python
import json
|
|
import re
|
|
import uuid
|
|
from abc import ABC, abstractmethod
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
ToolCall,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.messages.tool import ToolCallChunk
|
|
from langchain_core.output_parsers import (
|
|
JsonOutputParser,
|
|
PydanticOutputParser,
|
|
)
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils.function_calling import convert_to_openai_function
|
|
from pydantic import BaseModel, ConfigDict
|
|
|
|
from langchain_community.llms.oci_generative_ai import OCIGenAIBase
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
|
|
|
|
JSON_TO_PYTHON_TYPES = {
|
|
"string": "str",
|
|
"number": "float",
|
|
"boolean": "bool",
|
|
"integer": "int",
|
|
"array": "List",
|
|
"object": "Dict",
|
|
"any": "any",
|
|
}
|
|
|
|
|
|
def _is_pydantic_class(obj: Any) -> bool:
|
|
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
|
|
|
|
|
def _remove_signature_from_tool_description(name: str, description: str) -> str:
|
|
"""
|
|
Removes the `{name}{signature} - ` prefix and Args: section from tool description.
|
|
The signature is usually present for tools created with the @tool decorator,
|
|
whereas the Args: section may be present in function doc blocks.
|
|
"""
|
|
description = re.sub(rf"^{name}\(.*?\) -(?:> \w+? -)? ", "", description)
|
|
description = re.sub(r"(?s)(?:\n?\n\s*?)?Args:.*$", "", description)
|
|
return description
|
|
|
|
|
|
def _format_oci_tool_calls(
|
|
tool_calls: Optional[List[Any]] = None,
|
|
) -> List[Dict]:
|
|
"""
|
|
Formats a OCI GenAI API response into the tool call format used in Langchain.
|
|
"""
|
|
if not tool_calls:
|
|
return []
|
|
|
|
formatted_tool_calls = []
|
|
for tool_call in tool_calls:
|
|
formatted_tool_calls.append(
|
|
{
|
|
"id": uuid.uuid4().hex[:],
|
|
"function": {
|
|
"name": tool_call.name,
|
|
"arguments": json.dumps(tool_call.parameters),
|
|
},
|
|
"type": "function",
|
|
}
|
|
)
|
|
return formatted_tool_calls
|
|
|
|
|
|
def _convert_oci_tool_call_to_langchain(tool_call: Any) -> ToolCall:
|
|
"""Convert a OCI GenAI tool call into langchain_core.messages.ToolCall"""
|
|
_id = uuid.uuid4().hex[:]
|
|
return ToolCall(name=tool_call.name, args=tool_call.parameters, id=_id)
|
|
|
|
|
|
class Provider(ABC):
|
|
@property
|
|
@abstractmethod
|
|
def stop_sequence_key(self) -> str: ...
|
|
|
|
@abstractmethod
|
|
def chat_response_to_text(self, response: Any) -> str: ...
|
|
|
|
@abstractmethod
|
|
def chat_stream_to_text(self, event_data: Dict) -> str: ...
|
|
|
|
@abstractmethod
|
|
def is_chat_stream_end(self, event_data: Dict) -> bool: ...
|
|
|
|
@abstractmethod
|
|
def chat_generation_info(self, response: Any) -> Dict[str, Any]: ...
|
|
|
|
@abstractmethod
|
|
def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]: ...
|
|
|
|
@abstractmethod
|
|
def get_role(self, message: BaseMessage) -> str: ...
|
|
|
|
@abstractmethod
|
|
def messages_to_oci_params(
|
|
self, messages: Any, **kwargs: Any
|
|
) -> Dict[str, Any]: ...
|
|
|
|
@abstractmethod
|
|
def convert_to_oci_tool(
|
|
self,
|
|
tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
) -> Dict[str, Any]: ...
|
|
|
|
|
|
class CohereProvider(Provider):
|
|
stop_sequence_key: str = "stop_sequences"
|
|
|
|
def __init__(self) -> None:
|
|
from oci.generative_ai_inference import models
|
|
|
|
self.oci_chat_request = models.CohereChatRequest
|
|
self.oci_tool = models.CohereTool
|
|
self.oci_tool_param = models.CohereParameterDefinition
|
|
self.oci_tool_result = models.CohereToolResult
|
|
self.oci_tool_call = models.CohereToolCall
|
|
self.oci_chat_message = {
|
|
"USER": models.CohereUserMessage,
|
|
"CHATBOT": models.CohereChatBotMessage,
|
|
"SYSTEM": models.CohereSystemMessage,
|
|
"TOOL": models.CohereToolMessage,
|
|
}
|
|
self.chat_api_format = models.BaseChatRequest.API_FORMAT_COHERE
|
|
|
|
def chat_response_to_text(self, response: Any) -> str:
|
|
return response.data.chat_response.text
|
|
|
|
def chat_stream_to_text(self, event_data: Dict) -> str:
|
|
if "text" in event_data:
|
|
if "finishReason" in event_data or "toolCalls" in event_data:
|
|
return ""
|
|
else:
|
|
return event_data["text"]
|
|
else:
|
|
return ""
|
|
|
|
def is_chat_stream_end(self, event_data: Dict) -> bool:
|
|
return "finishReason" in event_data
|
|
|
|
def chat_generation_info(self, response: Any) -> Dict[str, Any]:
|
|
generation_info: Dict[str, Any] = {
|
|
"documents": response.data.chat_response.documents,
|
|
"citations": response.data.chat_response.citations,
|
|
"search_queries": response.data.chat_response.search_queries,
|
|
"is_search_required": response.data.chat_response.is_search_required,
|
|
"finish_reason": response.data.chat_response.finish_reason,
|
|
}
|
|
if response.data.chat_response.tool_calls:
|
|
# Only populate tool_calls when 1) present on the response and
|
|
# 2) has one or more calls.
|
|
generation_info["tool_calls"] = _format_oci_tool_calls(
|
|
response.data.chat_response.tool_calls
|
|
)
|
|
|
|
return generation_info
|
|
|
|
def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]:
|
|
generation_info: Dict[str, Any] = {
|
|
"documents": event_data.get("documents"),
|
|
"citations": event_data.get("citations"),
|
|
"finish_reason": event_data.get("finishReason"),
|
|
}
|
|
if "toolCalls" in event_data:
|
|
generation_info["tool_calls"] = []
|
|
for tool_call in event_data["toolCalls"]:
|
|
generation_info["tool_calls"].append(
|
|
{
|
|
"id": uuid.uuid4().hex[:],
|
|
"function": {
|
|
"name": tool_call["name"],
|
|
"arguments": json.dumps(tool_call["parameters"]),
|
|
},
|
|
"type": "function",
|
|
}
|
|
)
|
|
|
|
generation_info = {k: v for k, v in generation_info.items() if v is not None}
|
|
|
|
return generation_info
|
|
|
|
def get_role(self, message: BaseMessage) -> str:
|
|
if isinstance(message, HumanMessage):
|
|
return "USER"
|
|
elif isinstance(message, AIMessage):
|
|
return "CHATBOT"
|
|
elif isinstance(message, SystemMessage):
|
|
return "SYSTEM"
|
|
elif isinstance(message, ToolMessage):
|
|
return "TOOL"
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
def messages_to_oci_params(
|
|
self, messages: Sequence[ChatMessage], **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
is_force_single_step = kwargs.get("is_force_single_step") or False
|
|
|
|
oci_chat_history = []
|
|
|
|
for msg in messages[:-1]:
|
|
if self.get_role(msg) == "USER" or self.get_role(msg) == "SYSTEM":
|
|
oci_chat_history.append(
|
|
self.oci_chat_message[self.get_role(msg)](message=msg.content)
|
|
)
|
|
elif isinstance(msg, AIMessage):
|
|
if msg.tool_calls and is_force_single_step:
|
|
continue
|
|
tool_calls = (
|
|
[
|
|
self.oci_tool_call(name=tc["name"], parameters=tc["args"])
|
|
for tc in msg.tool_calls
|
|
]
|
|
if msg.tool_calls
|
|
else None
|
|
)
|
|
msg_content = msg.content if msg.content else " "
|
|
oci_chat_history.append(
|
|
self.oci_chat_message[self.get_role(msg)](
|
|
message=msg_content, tool_calls=tool_calls
|
|
)
|
|
)
|
|
|
|
# Get the messages for the current chat turn
|
|
current_chat_turn_messages = []
|
|
for message in messages[::-1]:
|
|
current_chat_turn_messages.append(message)
|
|
if isinstance(message, HumanMessage):
|
|
break
|
|
current_chat_turn_messages = current_chat_turn_messages[::-1]
|
|
|
|
oci_tool_results: Union[List[Any], None] = []
|
|
for message in current_chat_turn_messages:
|
|
if isinstance(message, ToolMessage):
|
|
tool_message = message
|
|
previous_ai_msgs = [
|
|
message
|
|
for message in current_chat_turn_messages
|
|
if isinstance(message, AIMessage) and message.tool_calls
|
|
]
|
|
if previous_ai_msgs:
|
|
previous_ai_msg = previous_ai_msgs[-1]
|
|
for lc_tool_call in previous_ai_msg.tool_calls:
|
|
if lc_tool_call["id"] == tool_message.tool_call_id:
|
|
tool_result = self.oci_tool_result()
|
|
tool_result.call = self.oci_tool_call(
|
|
name=lc_tool_call["name"],
|
|
parameters=lc_tool_call["args"],
|
|
)
|
|
tool_result.outputs = [{"output": tool_message.content}]
|
|
oci_tool_results.append(tool_result)
|
|
|
|
if not oci_tool_results:
|
|
oci_tool_results = None
|
|
|
|
message_str = "" if oci_tool_results else messages[-1].content
|
|
|
|
oci_params = {
|
|
"message": message_str,
|
|
"chat_history": oci_chat_history,
|
|
"tool_results": oci_tool_results,
|
|
"api_format": self.chat_api_format,
|
|
}
|
|
|
|
return {k: v for k, v in oci_params.items() if v is not None}
|
|
|
|
def convert_to_oci_tool(
|
|
self,
|
|
tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Convert a BaseTool instance, JSON schema dict, or BaseModel type to a OCI tool.
|
|
"""
|
|
if isinstance(tool, BaseTool):
|
|
return self.oci_tool(
|
|
name=tool.name,
|
|
description=_remove_signature_from_tool_description(
|
|
tool.name, tool.description
|
|
),
|
|
parameter_definitions={
|
|
p_name: self.oci_tool_param(
|
|
description=p_def.get("description")
|
|
if "description" in p_def
|
|
else "",
|
|
type=JSON_TO_PYTHON_TYPES.get(
|
|
p_def.get("type"), p_def.get("type", "any")
|
|
),
|
|
is_required="default" not in p_def,
|
|
)
|
|
for p_name, p_def in tool.args.items()
|
|
},
|
|
)
|
|
elif isinstance(tool, dict):
|
|
if not all(k in tool for k in ("title", "description", "properties")):
|
|
raise ValueError(
|
|
"Unsupported dict type. Tool must be passed in as a BaseTool instance, JSON schema dict, or BaseModel type." # noqa: E501
|
|
)
|
|
return self.oci_tool(
|
|
name=tool.get("title"),
|
|
description=tool.get("description"),
|
|
parameter_definitions={
|
|
p_name: self.oci_tool_param(
|
|
description=p_def.get("description"),
|
|
type=JSON_TO_PYTHON_TYPES.get(
|
|
p_def.get("type"), p_def.get("type", "any")
|
|
),
|
|
is_required="default" not in p_def,
|
|
)
|
|
for p_name, p_def in tool.get("properties", {}).items()
|
|
},
|
|
)
|
|
elif (isinstance(tool, type) and issubclass(tool, BaseModel)) or callable(tool):
|
|
as_json_schema_function = convert_to_openai_function(tool)
|
|
parameters = as_json_schema_function.get("parameters", {})
|
|
properties = parameters.get("properties", {})
|
|
return self.oci_tool(
|
|
name=as_json_schema_function.get("name"),
|
|
description=as_json_schema_function.get(
|
|
"description",
|
|
as_json_schema_function.get("name"),
|
|
),
|
|
parameter_definitions={
|
|
p_name: self.oci_tool_param(
|
|
description=p_def.get("description"),
|
|
type=JSON_TO_PYTHON_TYPES.get(
|
|
p_def.get("type"), p_def.get("type", "any")
|
|
),
|
|
is_required=p_name in parameters.get("required", []),
|
|
)
|
|
for p_name, p_def in properties.items()
|
|
},
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported tool type {type(tool)}. Tool must be passed in as a BaseTool instance, JSON schema dict, or BaseModel type." # noqa: E501
|
|
)
|
|
|
|
|
|
class MetaProvider(Provider):
|
|
stop_sequence_key: str = "stop"
|
|
|
|
def __init__(self) -> None:
|
|
from oci.generative_ai_inference import models
|
|
|
|
self.oci_chat_request = models.GenericChatRequest
|
|
self.oci_chat_message = {
|
|
"USER": models.UserMessage,
|
|
"SYSTEM": models.SystemMessage,
|
|
"ASSISTANT": models.AssistantMessage,
|
|
}
|
|
self.oci_chat_message_content = models.ChatContent
|
|
self.oci_chat_message_text_content = models.TextContent
|
|
self.oci_chat_message_image_content = models.ImageContent
|
|
self.oci_chat_message_image_url = models.ImageUrl
|
|
self.chat_api_format = models.BaseChatRequest.API_FORMAT_GENERIC
|
|
|
|
def chat_response_to_text(self, response: Any) -> str:
|
|
return response.data.chat_response.choices[0].message.content[0].text
|
|
|
|
def chat_stream_to_text(self, event_data: Dict) -> str:
|
|
return event_data["message"]["content"][0]["text"]
|
|
|
|
def is_chat_stream_end(self, event_data: Dict) -> bool:
|
|
return "message" not in event_data
|
|
|
|
def chat_generation_info(self, response: Any) -> Dict[str, Any]:
|
|
return {
|
|
"finish_reason": response.data.chat_response.choices[0].finish_reason,
|
|
"time_created": str(response.data.chat_response.time_created),
|
|
}
|
|
|
|
def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]:
|
|
return {
|
|
"finish_reason": event_data["finishReason"],
|
|
}
|
|
|
|
def get_role(self, message: BaseMessage) -> str:
|
|
# meta only supports alternating user/assistant roles
|
|
if isinstance(message, HumanMessage):
|
|
return "USER"
|
|
elif isinstance(message, AIMessage):
|
|
return "ASSISTANT"
|
|
elif isinstance(message, SystemMessage):
|
|
return "SYSTEM"
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
def messages_to_oci_params(
|
|
self, messages: List[BaseMessage], **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
"""Convert LangChain messages to OCI chat parameters.
|
|
|
|
Args:
|
|
messages: List of LangChain BaseMessage objects
|
|
**kwargs: Additional keyword arguments
|
|
|
|
Returns:
|
|
Dict containing OCI chat parameters
|
|
|
|
Raises:
|
|
ValueError: If message content is invalid
|
|
"""
|
|
oci_messages = []
|
|
|
|
for message in messages:
|
|
content = self._process_message_content(message.content)
|
|
oci_message = self.oci_chat_message[self.get_role(message)](content=content)
|
|
oci_messages.append(oci_message)
|
|
|
|
return {
|
|
"messages": oci_messages,
|
|
"api_format": self.chat_api_format,
|
|
"top_k": -1,
|
|
}
|
|
|
|
def _process_message_content(
|
|
self, content: Union[str, List[Union[str, Dict]]]
|
|
) -> List[Any]:
|
|
"""Process message content into OCI chat content format.
|
|
|
|
Args:
|
|
content: Message content as string or list
|
|
|
|
Returns:
|
|
List of OCI chat content objects
|
|
|
|
Raises:
|
|
ValueError: If content format is invalid
|
|
"""
|
|
if isinstance(content, str):
|
|
return [self.oci_chat_message_text_content(text=content)]
|
|
|
|
if not isinstance(content, list):
|
|
raise ValueError("Message content must be str or list of items")
|
|
|
|
processed_content = []
|
|
for item in content:
|
|
if isinstance(item, str):
|
|
processed_content.append(self.oci_chat_message_text_content(text=item))
|
|
continue
|
|
|
|
if not isinstance(item, dict):
|
|
raise ValueError(
|
|
f"Content items must be str or dict, got: {type(item)}"
|
|
)
|
|
|
|
if "type" not in item:
|
|
raise ValueError("Dict content item must have a type key")
|
|
|
|
if item["type"] == "image_url":
|
|
processed_content.append(
|
|
self.oci_chat_message_image_content(
|
|
image_url=self.oci_chat_message_image_url(
|
|
url=item["image_url"]["url"]
|
|
)
|
|
)
|
|
)
|
|
elif item["type"] == "text":
|
|
processed_content.append(
|
|
self.oci_chat_message_text_content(text=item["text"])
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported content type: {item['type']}")
|
|
|
|
return processed_content
|
|
|
|
def convert_to_oci_tool(
|
|
self,
|
|
tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
) -> Dict[str, Any]:
|
|
raise NotImplementedError("Tools not supported for Meta models")
|
|
|
|
|
|
class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
|
|
"""ChatOCIGenAI chat model integration.
|
|
|
|
Setup:
|
|
Install ``langchain-community`` and the ``oci`` sdk.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community oci
|
|
|
|
Key init args — completion params:
|
|
model_id: str
|
|
Id of the OCIGenAI chat model to use, e.g., cohere.command-r-16k.
|
|
is_stream: bool
|
|
Whether to stream back partial progress
|
|
model_kwargs: Optional[Dict]
|
|
Keyword arguments to pass to the specific model used, e.g., temperature, max_tokens.
|
|
|
|
Key init args — client params:
|
|
service_endpoint: str
|
|
The endpoint URL for the OCIGenAI service, e.g., https://inference.generativeai.us-chicago-1.oci.oraclecloud.com.
|
|
compartment_id: str
|
|
The compartment OCID.
|
|
auth_type: str
|
|
The authentication type to use, e.g., API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPAL, RESOURCE_PRINCIPAL.
|
|
auth_profile: Optional[str]
|
|
The name of the profile in ~/.oci/config, if not specified , DEFAULT will be used.
|
|
auth_file_location: Optional[str]
|
|
Path to the config file, If not specified, ~/.oci/config will be used.
|
|
provider: str
|
|
Provider name of the model. Default to None, will try to be derived from the model_id otherwise, requires user input.
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatOCIGenAI
|
|
|
|
chat = ChatOCIGenAI(
|
|
model_id="cohere.command-r-16k",
|
|
service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com",
|
|
compartment_id="MY_OCID",
|
|
model_kwargs={"temperature": 0.7, "max_tokens": 500},
|
|
)
|
|
|
|
Invoke:
|
|
.. code-block:: python
|
|
messages = [
|
|
SystemMessage(content="your are an AI assistant."),
|
|
AIMessage(content="Hi there human!"),
|
|
HumanMessage(content="tell me a joke."),
|
|
]
|
|
response = chat.invoke(messages)
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for r in chat.stream(messages):
|
|
print(r.content, end="", flush=True)
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
response = chat.invoke(messages)
|
|
print(response.response_metadata)
|
|
|
|
""" # noqa: E501
|
|
|
|
model_config = ConfigDict(
|
|
extra="forbid",
|
|
arbitrary_types_allowed=True,
|
|
)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "oci_generative_ai_chat"
|
|
|
|
@property
|
|
def _provider_map(self) -> Mapping[str, Any]:
|
|
"""Get the provider map"""
|
|
return {
|
|
"cohere": CohereProvider(),
|
|
"meta": MetaProvider(),
|
|
}
|
|
|
|
@property
|
|
def _provider(self) -> Any:
|
|
"""Get the internal provider object"""
|
|
return self._get_provider(provider_map=self._provider_map)
|
|
|
|
def _prepare_request(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]],
|
|
stream: bool,
|
|
**kwargs: Any,
|
|
) -> Dict[str, Any]:
|
|
try:
|
|
from oci.generative_ai_inference import models
|
|
|
|
except ImportError as ex:
|
|
raise ModuleNotFoundError(
|
|
"Could not import oci python package. "
|
|
"Please make sure you have the oci package installed."
|
|
) from ex
|
|
|
|
oci_params = self._provider.messages_to_oci_params(messages, **kwargs)
|
|
|
|
oci_params["is_stream"] = stream
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
if stop is not None:
|
|
_model_kwargs[self._provider.stop_sequence_key] = stop
|
|
|
|
chat_params = {**_model_kwargs, **kwargs, **oci_params}
|
|
|
|
if not self.model_id:
|
|
raise ValueError("Model ID is required to chat")
|
|
|
|
if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX):
|
|
serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id)
|
|
else:
|
|
serving_mode = models.OnDemandServingMode(model_id=self.model_id)
|
|
|
|
request = models.ChatDetails(
|
|
compartment_id=self.compartment_id,
|
|
serving_mode=serving_mode,
|
|
chat_request=self._provider.oci_chat_request(**chat_params),
|
|
)
|
|
|
|
return request
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
formatted_tools = [self._provider.convert_to_oci_tool(tool) for tool in tools]
|
|
return super().bind(tools=formatted_tools, **kwargs)
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
|
*,
|
|
method: Literal["function_calling", "json_mode"] = "function_calling",
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the OCI Generative AI function-calling spec.
|
|
method:
|
|
The method for steering model generation, either "function_calling"
|
|
or "json_mode". If "function_calling" then the schema will be converted
|
|
to an OCI function and the returned model will make use of the
|
|
function-calling API. If "json_mode" then Cohere's JSON mode will be
|
|
used. Note that if using "json_mode" then you must include instructions
|
|
for formatting the output into the desired schema into the model call.
|
|
include_raw:
|
|
If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = _is_pydantic_class(schema)
|
|
if method == "function_calling":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is 'function_calling'. "
|
|
"Received None."
|
|
)
|
|
llm = self.bind_tools([schema], **kwargs)
|
|
tool_name = getattr(self._provider.convert_to_oci_tool(schema), "name")
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], # type: ignore[list-item]
|
|
first_tool_only=True,
|
|
)
|
|
else:
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=tool_name, first_tool_only=True
|
|
)
|
|
elif method == "json_mode":
|
|
llm = self.bind(response_format={"type": "json_object"})
|
|
output_parser = (
|
|
PydanticOutputParser(pydantic_object=schema) # type: ignore[type-var, arg-type]
|
|
if is_pydantic_schema
|
|
else JsonOutputParser()
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized method argument. "
|
|
f"Expected `function_calling` or `json_mode`."
|
|
f"Received: `{method}`."
|
|
)
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Call out to a OCIGenAI chat model.
|
|
|
|
Args:
|
|
messages: list of LangChain messages
|
|
stop: Optional list of stop words to use.
|
|
|
|
Returns:
|
|
LangChain ChatResult
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
HumanMessage(content="hello!"),
|
|
AIMessage(content="Hi there human!"),
|
|
HumanMessage(content="Meow!")
|
|
]
|
|
|
|
response = llm.invoke(messages)
|
|
"""
|
|
if self.is_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
request = self._prepare_request(messages, stop=stop, stream=False, **kwargs)
|
|
response = self.client.chat(request)
|
|
|
|
content = self._provider.chat_response_to_text(response)
|
|
|
|
if stop is not None:
|
|
content = enforce_stop_tokens(content, stop)
|
|
|
|
generation_info = self._provider.chat_generation_info(response)
|
|
|
|
llm_output = {
|
|
"model_id": response.data.model_id,
|
|
"model_version": response.data.model_version,
|
|
"request_id": response.request_id,
|
|
"content-length": response.headers["content-length"],
|
|
}
|
|
|
|
if "tool_calls" in generation_info:
|
|
tool_calls = [
|
|
_convert_oci_tool_call_to_langchain(tool_call)
|
|
for tool_call in response.data.chat_response.tool_calls
|
|
]
|
|
else:
|
|
tool_calls = []
|
|
|
|
message = AIMessage(
|
|
content=content,
|
|
additional_kwargs=generation_info,
|
|
tool_calls=tool_calls,
|
|
)
|
|
return ChatResult(
|
|
generations=[
|
|
ChatGeneration(message=message, generation_info=generation_info)
|
|
],
|
|
llm_output=llm_output,
|
|
)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
request = self._prepare_request(messages, stop=stop, stream=True, **kwargs)
|
|
response = self.client.chat(request)
|
|
|
|
for event in response.data.events():
|
|
event_data = json.loads(event.data)
|
|
if not self._provider.is_chat_stream_end(event_data): # still streaming
|
|
delta = self._provider.chat_stream_to_text(event_data)
|
|
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(delta, chunk=chunk)
|
|
yield chunk
|
|
else: # stream end
|
|
generation_info = self._provider.chat_stream_generation_info(event_data)
|
|
tool_call_chunks = []
|
|
if tool_calls := generation_info.get("tool_calls"):
|
|
content = self._provider.chat_stream_to_text(event_data)
|
|
try:
|
|
tool_call_chunks = [
|
|
ToolCallChunk(
|
|
name=tool_call["function"].get("name"),
|
|
args=tool_call["function"].get("arguments"),
|
|
id=tool_call.get("id"),
|
|
index=tool_call.get("index"),
|
|
)
|
|
for tool_call in tool_calls
|
|
]
|
|
except KeyError:
|
|
pass
|
|
else:
|
|
content = ""
|
|
message = AIMessageChunk(
|
|
content=content,
|
|
additional_kwargs=generation_info,
|
|
tool_call_chunks=tool_call_chunks,
|
|
)
|
|
yield ChatGenerationChunk(
|
|
message=message,
|
|
generation_info=generation_info,
|
|
)
|