mirror of
https://github.com/hwchase17/langchain.git
synced 2026-01-29 21:30:18 +00:00
Plus, some accompanying docs updates
Some compelling usage:
```py
from langchain_perplexity import ChatPerplexity
chat = ChatPerplexity(model="llama-3.1-sonar-small-128k-online")
response = chat.invoke(
"What were the most significant newsworthy events that occurred in the US recently?",
extra_body={"search_recency_filter": "week"},
)
print(response.content)
# > Here are the top significant newsworthy events in the US recently: ...
```
Also, some confirmation of structured outputs:
```py
from langchain_perplexity import ChatPerplexity
from pydantic import BaseModel
class AnswerFormat(BaseModel):
first_name: str
last_name: str
year_of_birth: int
num_seasons_in_nba: int
messages = [
{"role": "system", "content": "Be precise and concise."},
{
"role": "user",
"content": (
"Tell me about Michael Jordan. "
"Please output a JSON object containing the following fields: "
"first_name, last_name, year_of_birth, num_seasons_in_nba. "
),
},
]
llm = ChatPerplexity(model="llama-3.1-sonar-small-128k-online")
structured_llm = llm.with_structured_output(AnswerFormat)
response = structured_llm.invoke(messages)
print(repr(response))
#> AnswerFormat(first_name='Michael', last_name='Jordan', year_of_birth=1963, num_seasons_in_nba=15)
```