langchain/docs/getting_started/memory.ipynb
2022-11-25 12:41:27 -05:00

324 lines
10 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "d31df93e",
"metadata": {},
"source": [
"# Memory\n",
"So far, all the chains and agents we've gone through have been stateless. But often, you may want a chain or agent to have some concept of \"memory\" so that it may remember information about its previous interactions. The most clear and simple example of this is when designing a chatbot - you want it to remember previous messages so it can use context from that to have a better conversation. This would be a type of \"short-term memory\". On the more complex side, you could imagine a chain/agent remembering key pieces of information over time - this would be a form of \"long-term memory\".\n",
"\n",
"LangChain provides several specially created chains just for this purpose. This notebook walk throughs using one of those chains (the `ConversationChain`) with two different types of memory."
]
},
{
"cell_type": "markdown",
"id": "d051c1da",
"metadata": {},
"source": [
"### ConversationChain with default memory\n",
"By default, the `ConversationChain` has a simple type of memory which remebers all previes inputs/outputs and adds them to the context that is passed. Let's take a look at using this chain (setting `verbose=True` so we can see the prompt)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ae046bff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi there!\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' Hello! How are you today?'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import OpenAI, ConversationChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"conversation = ConversationChain(llm=llm, verbose=True)\n",
"\n",
"conversation.predict(input=\"Hi there!\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d8e2a6ff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi there!\n",
"AI: Hello! How are you today?\n",
"Human: I'm doing well! Just having a conversation with an AI.\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\" That's great! What would you like to talk about?\""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation.predict(input=\"I'm doing well! Just having a conversation with an AI.\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "15eda316",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi there!\n",
"AI: Hello! How are you today?\n",
"Human: I'm doing well! Just having a conversation with an AI.\n",
"AI: That's great! What would you like to talk about?\n",
"Human: Tell me about yourself.\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' I am an AI created to provide information and support to humans. I enjoy learning and exploring new things.'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation.predict(input=\"Tell me about yourself.\")"
]
},
{
"cell_type": "markdown",
"id": "4fad9448",
"metadata": {},
"source": [
"### ConversationChain with ConversationSummaryMemory\n",
"Now lets take a look at using a slightly more complex type of memory - `ConversationSummaryMemory`. This type of memory creates a summary of the conversation over time. This can be useful for condensing information from the conversation over time.\n",
"\n",
"Let's walk through an example, again setting `verbose=True` so we can see the prompt."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f60a2fe8",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.conversation.memory import ConversationSummaryMemory"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b7274f2c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi, what's up?\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nI'm doing well, thank you for asking. I'm currently working on a project that I'm really excited about.\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation_with_summary = ConversationChain(llm=llm, memory=ConversationSummaryMemory(llm=OpenAI()), verbose=True)\n",
"conversation_with_summary.predict(input=\"Hi, what's up?\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a6b6b88f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"The human and artificial intelligence are talking. The human asked the AI what it is doing, and the AI said that it is working on a project that it is excited about.\n",
"Human: Tell me more about it!\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nI'm working on a project that I'm really excited about. It's a lot of work, but I think it's going to be really great when it's finished. I can't wait to show it to you!\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation_with_summary.predict(input=\"Tell me more about it!\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "dad869fe",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"\n",
"The human and artificial intelligence are talking. The human asked the AI what it is doing, and the AI said that it is working on a project that it is excited about. The AI said that the project is a lot of work, but it is going to be great when it is finished.\n",
"Human: Very cool -- what is the scope of the project?\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nThe project is quite large in scope. It involves a lot of data analysis and work with artificial intelligence algorithms.'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation_with_summary.predict(input=\"Very cool -- what is the scope of the project?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0eb11bd0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}