mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	This can only be reviewed by [hiding whitespaces](https://github.com/langchain-ai/langchain/pull/30302/files?diff=unified&w=1). The motivation behind this PR is to get my hands on the docs and make the LangSmith teasing short and clear. Right now I don't know how to do it, but this could be an include in the future. --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
		
			
				
	
	
		
			237 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|   "cells": [
 | |
|     {
 | |
|       "cell_type": "raw",
 | |
|       "id": "67db2992",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "---\n",
 | |
|         "sidebar_label: __ModuleName__\n",
 | |
|         "---"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "9597802c",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "# __ModuleName__LLM\n",
 | |
|         "\n",
 | |
|         "- [ ] TODO: Make sure API reference link is correct\n",
 | |
|         "\n",
 | |
|         "This will help you get started with __ModuleName__ completion models (LLMs) using LangChain. For detailed documentation on `__ModuleName__LLM` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html).\n",
 | |
|         "\n",
 | |
|         "## Overview\n",
 | |
|         "### Integration details\n",
 | |
|         "\n",
 | |
|         "- TODO: Fill in table features.\n",
 | |
|         "- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
 | |
|         "- TODO: Make sure API reference links are correct.\n",
 | |
|         "\n",
 | |
|         "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n",
 | |
|         "| :--- | :--- | :---: | :---: |  :---: | :---: | :---: |\n",
 | |
|         "| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ |  |  |\n",
 | |
|         "\n",
 | |
|         "## Setup\n",
 | |
|         "\n",
 | |
|         "- TODO: Update with relevant info.\n",
 | |
|         "\n",
 | |
|         "To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
 | |
|         "\n",
 | |
|         "### Credentials\n",
 | |
|         "\n",
 | |
|         "- TODO: Update with relevant info.\n",
 | |
|         "\n",
 | |
|         "Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "bc51e756",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "import getpass\n",
 | |
|         "import os\n",
 | |
|         "\n",
 | |
|         "if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
 | |
|         "    os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "4b6e1ca6",
 | |
|       "metadata": {},
 | |
|       "source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "196c2b41",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
 | |
|         "# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "809c6577",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "### Installation\n",
 | |
|         "\n",
 | |
|         "The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "59c710c4",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "%pip install -qU __package_name__"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "0a760037",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## Instantiation\n",
 | |
|         "\n",
 | |
|         "Now we can instantiate our model object and generate chat completions:\n",
 | |
|         "\n",
 | |
|         "- TODO: Update model instantiation with relevant params."
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "a0562a13",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "from __module_name__ import __ModuleName__LLM\n",
 | |
|         "\n",
 | |
|         "llm = __ModuleName__LLM(\n",
 | |
|         "    model=\"model-name\",\n",
 | |
|         "    temperature=0,\n",
 | |
|         "    max_tokens=None,\n",
 | |
|         "    timeout=None,\n",
 | |
|         "    max_retries=2,\n",
 | |
|         "    # other params...\n",
 | |
|         ")"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "0ee90032",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## Invocation\n",
 | |
|         "\n",
 | |
|         "- [ ] TODO: Run cells so output can be seen."
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": 4,
 | |
|       "id": "035dea0f",
 | |
|       "metadata": {
 | |
|         "tags": []
 | |
|       },
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "input_text = \"__ModuleName__ is an AI company that \"\n",
 | |
|         "\n",
 | |
|         "completion = llm.invoke(input_text)\n",
 | |
|         "completion"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "add38532",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## Chaining\n",
 | |
|         "\n",
 | |
|         "We can [chain](/docs/how_to/sequence/) our completion model with a prompt template like so:\n",
 | |
|         "\n",
 | |
|         "- TODO: Run cells so output can be seen."
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "078e9db2",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "from langchain_core.prompts import PromptTemplate\n",
 | |
|         "\n",
 | |
|         "prompt = PromptTemplate(\n",
 | |
|         "    \"How to say {input} in {output_language}:\\n\"\n",
 | |
|         ")\n",
 | |
|         "\n",
 | |
|         "chain = prompt | llm\n",
 | |
|         "chain.invoke(\n",
 | |
|         "    {\n",
 | |
|         "        \"output_language\": \"German\",\n",
 | |
|         "        \"input\": \"I love programming.\",\n",
 | |
|         "    }\n",
 | |
|         ")"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "e99eef30",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## TODO: Any functionality specific to this model provider\n",
 | |
|         "\n",
 | |
|         "E.g. creating/using finetuned models via this provider. Delete if not relevant"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "e9bdfcef",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## API reference\n",
 | |
|         "\n",
 | |
|         "For detailed documentation of all `__ModuleName__LLM` features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html"
 | |
|       ]
 | |
|     }
 | |
|   ],
 | |
|   "metadata": {
 | |
|     "kernelspec": {
 | |
|       "display_name": "Python 3.11.1 64-bit",
 | |
|       "language": "python",
 | |
|       "name": "python3"
 | |
|     },
 | |
|     "language_info": {
 | |
|       "codemirror_mode": {
 | |
|         "name": "ipython",
 | |
|         "version": 3
 | |
|       },
 | |
|       "file_extension": ".py",
 | |
|       "mimetype": "text/x-python",
 | |
|       "name": "python",
 | |
|       "nbconvert_exporter": "python",
 | |
|       "pygments_lexer": "ipython3",
 | |
|       "version": "3.9.7"
 | |
|     },
 | |
|     "vscode": {
 | |
|       "interpreter": {
 | |
|         "hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
 | |
|       }
 | |
|     }
 | |
|   },
 | |
|   "nbformat": 4,
 | |
|   "nbformat_minor": 5
 | |
| }
 |