mirror of
https://github.com/hwchase17/langchain.git
synced 2026-01-24 22:05:39 +00:00
limit the most recent documents to fetch from MongoDB database.
Thank you for contributing to LangChain!
- [ ] **limit the most recent documents to fetch from MongoDB
database.**: "langchain_mongodb: limit the most recent documents to
fetch from MongoDB database."
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Added a doc_limit parameter which enables the limit
for the documents to fetch from MongoDB database
- **Issue:**
- **Dependencies:** None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
langchain-mongodb
Installation
pip install -U langchain-mongodb
Usage
- See Getting Started with the LangChain Integration for a walkthrough on using your first LangChain implementation with MongoDB Atlas.
Using MongoDBAtlasVectorSearch
from langchain_mongodb import MongoDBAtlasVectorSearch
# Pull MongoDB Atlas URI from environment variables
MONGODB_ATLAS_CLUSTER_URI = os.environ.get("MONGODB_ATLAS_CLUSTER_URI")
DB_NAME = "langchain_db"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]
# Create the vector search via `from_connection_string`
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGODB_ATLAS_CLUSTER_URI,
DB_NAME + "." + COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
# Initialize MongoDB python client
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
# Create the vector search via instantiation
vector_search_2 = MongoDBAtlasVectorSearch(
collection=MONGODB_COLLECTION,
embeddings=OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)