mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 10:10:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			196 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "eec4efda",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Self Hosted Embeddings\n",
 | 
						|
    "Let's load the SelfHostedEmbeddings, SelfHostedHuggingFaceEmbeddings, and SelfHostedHuggingFaceInstructEmbeddings classes."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "d338722a",
 | 
						|
   "metadata": {
 | 
						|
    "scrolled": true
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.embeddings import (\n",
 | 
						|
    "    SelfHostedEmbeddings,\n",
 | 
						|
    "    SelfHostedHuggingFaceEmbeddings,\n",
 | 
						|
    "    SelfHostedHuggingFaceInstructEmbeddings,\n",
 | 
						|
    ")\n",
 | 
						|
    "import runhouse as rh"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "146559e8",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "# For an on-demand A100 with GCP, Azure, or Lambda\n",
 | 
						|
    "gpu = rh.cluster(name=\"rh-a10x\", instance_type=\"A100:1\", use_spot=False)\n",
 | 
						|
    "\n",
 | 
						|
    "# For an on-demand A10G with AWS (no single A100s on AWS)\n",
 | 
						|
    "# gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws')\n",
 | 
						|
    "\n",
 | 
						|
    "# For an existing cluster\n",
 | 
						|
    "# gpu = rh.cluster(ips=['<ip of the cluster>'],\n",
 | 
						|
    "#                  ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'},\n",
 | 
						|
    "#                  name='my-cluster')"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "1230f7df",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "embeddings = SelfHostedHuggingFaceEmbeddings(hardware=gpu)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 6,
 | 
						|
   "id": "2684e928",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "text = \"This is a test document.\""
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "1dc5e606",
 | 
						|
   "metadata": {
 | 
						|
    "scrolled": true
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "query_result = embeddings.embed_query(text)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "cef9cc54",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "And similarly for SelfHostedHuggingFaceInstructEmbeddings:"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "81a17ca3",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "embeddings = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "5a33d1c8",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "Now let's load an embedding model with a custom load function:"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 12,
 | 
						|
   "id": "c4af5679",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "def get_pipeline():\n",
 | 
						|
    "    from transformers import (\n",
 | 
						|
    "        AutoModelForCausalLM,\n",
 | 
						|
    "        AutoTokenizer,\n",
 | 
						|
    "        pipeline,\n",
 | 
						|
    "    )  # Must be inside the function in notebooks\n",
 | 
						|
    "\n",
 | 
						|
    "    model_id = \"facebook/bart-base\"\n",
 | 
						|
    "    tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
 | 
						|
    "    model = AutoModelForCausalLM.from_pretrained(model_id)\n",
 | 
						|
    "    return pipeline(\"feature-extraction\", model=model, tokenizer=tokenizer)\n",
 | 
						|
    "\n",
 | 
						|
    "\n",
 | 
						|
    "def inference_fn(pipeline, prompt):\n",
 | 
						|
    "    # Return last hidden state of the model\n",
 | 
						|
    "    if isinstance(prompt, list):\n",
 | 
						|
    "        return [emb[0][-1] for emb in pipeline(prompt)]\n",
 | 
						|
    "    return pipeline(prompt)[0][-1]"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "8654334b",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "embeddings = SelfHostedEmbeddings(\n",
 | 
						|
    "    model_load_fn=get_pipeline,\n",
 | 
						|
    "    hardware=gpu,\n",
 | 
						|
    "    model_reqs=[\"./\", \"torch\", \"transformers\"],\n",
 | 
						|
    "    inference_fn=inference_fn,\n",
 | 
						|
    ")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "fc1bfd0f",
 | 
						|
   "metadata": {
 | 
						|
    "scrolled": false
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "query_result = embeddings.embed_query(text)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "aaad49f8",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.9.1"
 | 
						|
  },
 | 
						|
  "vscode": {
 | 
						|
   "interpreter": {
 | 
						|
    "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
 | 
						|
   }
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |