mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-24 20:20:50 +00:00 
			
		
		
		
	- **Description:** Handing response where _interest_over_time_ is missing. - **Issue:** #15859 - **Dependencies:** None
		
			
				
	
	
		
			122 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Util that calls Google Scholar Search."""
 | |
| from typing import Any, Dict, Optional, cast
 | |
| 
 | |
| from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
 | |
| from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
 | |
| 
 | |
| 
 | |
| class GoogleTrendsAPIWrapper(BaseModel):
 | |
|     """Wrapper for SerpApi's Google Scholar API
 | |
| 
 | |
|     You can create SerpApi.com key by signing up at: https://serpapi.com/users/sign_up.
 | |
| 
 | |
|     The wrapper uses the SerpApi.com python package:
 | |
|     https://serpapi.com/integrations/python
 | |
| 
 | |
|     To use, you should have the environment variable ``SERPAPI_API_KEY``
 | |
|     set with your API key, or pass `serp_api_key` as a named parameter
 | |
|     to the constructor.
 | |
| 
 | |
|      Example:
 | |
|         .. code-block:: python
 | |
| 
 | |
|         from langchain_community.utilities import GoogleTrendsAPIWrapper
 | |
|         google_trends = GoogleTrendsAPIWrapper()
 | |
|         google_trends.run('langchain')
 | |
|     """
 | |
| 
 | |
|     serp_search_engine: Any
 | |
|     serp_api_key: Optional[SecretStr] = None
 | |
| 
 | |
|     class Config:
 | |
|         """Configuration for this pydantic object."""
 | |
| 
 | |
|         extra = Extra.forbid
 | |
| 
 | |
|     @root_validator()
 | |
|     def validate_environment(cls, values: Dict) -> Dict:
 | |
|         """Validate that api key and python package exists in environment."""
 | |
|         values["serp_api_key"] = convert_to_secret_str(
 | |
|             get_from_dict_or_env(values, "serp_api_key", "SERPAPI_API_KEY")
 | |
|         )
 | |
| 
 | |
|         try:
 | |
|             from serpapi import SerpApiClient
 | |
| 
 | |
|         except ImportError:
 | |
|             raise ImportError(
 | |
|                 "google-search-results is not installed. "
 | |
|                 "Please install it with `pip install google-search-results"
 | |
|                 ">=2.4.2`"
 | |
|             )
 | |
|         serp_search_engine = SerpApiClient
 | |
|         values["serp_search_engine"] = serp_search_engine
 | |
| 
 | |
|         return values
 | |
| 
 | |
|     def run(self, query: str) -> str:
 | |
|         """Run query through Google Trends with Serpapi"""
 | |
|         serpapi_api_key = cast(SecretStr, self.serp_api_key)
 | |
|         params = {
 | |
|             "engine": "google_trends",
 | |
|             "api_key": serpapi_api_key.get_secret_value(),
 | |
|             "q": query,
 | |
|         }
 | |
| 
 | |
|         total_results = []
 | |
|         client = self.serp_search_engine(params)
 | |
|         client_dict = client.get_dict()
 | |
|         total_results = (
 | |
|             client_dict["interest_over_time"]["timeline_data"]
 | |
|             if "interest_over_time" in client_dict
 | |
|             else None
 | |
|         )
 | |
| 
 | |
|         if not total_results:
 | |
|             return "No good Trend Result was found"
 | |
| 
 | |
|         start_date = total_results[0]["date"].split()
 | |
|         end_date = total_results[-1]["date"].split()
 | |
|         values = [
 | |
|             results.get("values")[0].get("extracted_value") for results in total_results
 | |
|         ]
 | |
|         min_value = min(values)
 | |
|         max_value = max(values)
 | |
|         avg_value = sum(values) / len(values)
 | |
|         percentage_change = (
 | |
|             (values[-1] - values[0])
 | |
|             / (values[0] if values[0] != 0 else 1)
 | |
|             * (100 if values[0] != 0 else 1)
 | |
|         )
 | |
| 
 | |
|         params = {
 | |
|             "engine": "google_trends",
 | |
|             "api_key": serpapi_api_key.get_secret_value(),
 | |
|             "data_type": "RELATED_QUERIES",
 | |
|             "q": query,
 | |
|         }
 | |
| 
 | |
|         total_results2 = {}
 | |
|         client = self.serp_search_engine(params)
 | |
|         total_results2 = client.get_dict().get("related_queries", {})
 | |
|         rising = []
 | |
|         top = []
 | |
| 
 | |
|         rising = [results.get("query") for results in total_results2.get("rising", [])]
 | |
|         top = [results.get("query") for results in total_results2.get("top", [])]
 | |
| 
 | |
|         doc = [
 | |
|             f"Query: {query}\n"
 | |
|             f"Date From: {start_date[0]} {start_date[1]}, {start_date[-1]}\n"
 | |
|             f"Date To: {end_date[0]} {end_date[3]} {end_date[-1]}\n"
 | |
|             f"Min Value: {min_value}\n"
 | |
|             f"Max Value: {max_value}\n"
 | |
|             f"Average Value: {avg_value}\n"
 | |
|             f"Percent Change: {str(percentage_change) + '%'}\n"
 | |
|             f"Trend values: {', '.join([str(x) for x in values])}\n"
 | |
|             f"Rising Related Queries: {', '.join(rising)}\n"
 | |
|             f"Top Related Queries: {', '.join(top)}"
 | |
|         ]
 | |
| 
 | |
|         return "\n\n".join(doc)
 |