mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-29 11:09:07 +00:00
# Bedrock LLM and Embeddings This PR adds a new LLM and an Embeddings class for the [Bedrock](https://aws.amazon.com/bedrock) service. The PR also includes example notebooks for using the LLM class in a conversation chain and embeddings usage in creating an embedding for a query and document. **Note**: AWS is doing a private release of the Bedrock service on 05/31/2023; users need to request access and added to an allowlist in order to start using the Bedrock models and embeddings. Please use the [Bedrock Home Page](https://aws.amazon.com/bedrock) to request access and to learn more about the models available in Bedrock. <!-- For a quicker response, figure out the right person to tag with @ @hwchase17 - project lead Tracing / Callbacks - @agola11 Async - @agola11 DataLoaders - @eyurtsev Models - @hwchase17 - @agola11 Agents / Tools / Toolkits - @vowelparrot VectorStores / Retrievers / Memory - @dev2049 -->
87 lines
1.9 KiB
Plaintext
87 lines
1.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Amazon Bedrock"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install boto3"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.llms.bedrock import Bedrock\n",
|
|
"\n",
|
|
"llm = Bedrock(credentials_profile_name=\"bedrock-admin\", model_id=\"amazon.titan-tg1-large\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Using in a conversation chain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chains import ConversationChain\n",
|
|
"from langchain.memory import ConversationBufferMemory\n",
|
|
"\n",
|
|
"conversation = ConversationChain(\n",
|
|
" llm=llm,\n",
|
|
" verbose=True,\n",
|
|
" memory=ConversationBufferMemory()\n",
|
|
")\n",
|
|
"\n",
|
|
"conversation.predict(input=\"Hi there!\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|