mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-19 05:51:16 +00:00
# Bedrock LLM and Embeddings This PR adds a new LLM and an Embeddings class for the [Bedrock](https://aws.amazon.com/bedrock) service. The PR also includes example notebooks for using the LLM class in a conversation chain and embeddings usage in creating an embedding for a query and document. **Note**: AWS is doing a private release of the Bedrock service on 05/31/2023; users need to request access and added to an allowlist in order to start using the Bedrock models and embeddings. Please use the [Bedrock Home Page](https://aws.amazon.com/bedrock) to request access and to learn more about the models available in Bedrock. <!-- For a quicker response, figure out the right person to tag with @ @hwchase17 - project lead Tracing / Callbacks - @agola11 Async - @agola11 DataLoaders - @eyurtsev Models - @hwchase17 - @agola11 Agents / Tools / Toolkits - @vowelparrot VectorStores / Retrievers / Memory - @dev2049 -->
76 lines
1.6 KiB
Plaintext
76 lines
1.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "75e378f5-55d7-44b6-8e2e-6d7b8b171ec4",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Bedrock Embeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2dbe40fa-7c0b-4bcb-a712-230bf613a42f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install boto3"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "282239c8-e03a-4abc-86c1-ca6120231a20",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings import BedrockEmbeddings\n",
|
|
"\n",
|
|
"embeddings = BedrockEmbeddings(credentials_profile_name=\"bedrock-admin\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "19a46868-4bed-40cd-89ca-9813fbfda9cb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings.embed_query(\"This is a content of the document\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cf0349c4-6408-4342-8691-69276a388784",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings.embed_documents([\"This is a content of the document\"])"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|