mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			429 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			429 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "984169ca",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# SQL Question Answering Benchmarking: Chinook\n",
 | |
|     "\n",
 | |
|     "Here we go over how to benchmark performance on a question answering task over a SQL database.\n",
 | |
|     "\n",
 | |
|     "It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 28,
 | |
|    "id": "44874486",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Comment this out if you are NOT using tracing\n",
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "0f66405e",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Loading the data\n",
 | |
|     "\n",
 | |
|     "First, let's load the data."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "id": "0df1393f",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "application/vnd.jupyter.widget-view+json": {
 | |
|        "model_id": "b220d07ee5d14909bc842b4545cdc0de",
 | |
|        "version_major": 2,
 | |
|        "version_minor": 0
 | |
|       },
 | |
|       "text/plain": [
 | |
|        "Downloading readme:   0%|          | 0.00/21.0 [00:00<?, ?B/s]"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "Downloading and preparing dataset json/LangChainDatasets--sql-qa-chinook to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "application/vnd.jupyter.widget-view+json": {
 | |
|        "model_id": "e89e3c8ef76f49889c4b39c624828c71",
 | |
|        "version_major": 2,
 | |
|        "version_minor": 0
 | |
|       },
 | |
|       "text/plain": [
 | |
|        "Downloading data files:   0%|          | 0/1 [00:00<?, ?it/s]"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "application/vnd.jupyter.widget-view+json": {
 | |
|        "model_id": "a8421df6c26045e8978c7086cb418222",
 | |
|        "version_major": 2,
 | |
|        "version_minor": 0
 | |
|       },
 | |
|       "text/plain": [
 | |
|        "Downloading data:   0%|          | 0.00/1.44k [00:00<?, ?B/s]"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "application/vnd.jupyter.widget-view+json": {
 | |
|        "model_id": "d1fb6becc3324a85bf039a53caf30924",
 | |
|        "version_major": 2,
 | |
|        "version_minor": 0
 | |
|       },
 | |
|       "text/plain": [
 | |
|        "Extracting data files:   0%|          | 0/1 [00:00<?, ?it/s]"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "application/vnd.jupyter.widget-view+json": {
 | |
|        "model_id": "",
 | |
|        "version_major": 2,
 | |
|        "version_minor": 0
 | |
|       },
 | |
|       "text/plain": [
 | |
|        "Generating train split: 0 examples [00:00, ? examples/s]"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     },
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data.\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "application/vnd.jupyter.widget-view+json": {
 | |
|        "model_id": "9d68ad1b3e4a4bd79f92597aac4d3cc9",
 | |
|        "version_major": 2,
 | |
|        "version_minor": 0
 | |
|       },
 | |
|       "text/plain": [
 | |
|        "  0%|          | 0/1 [00:00<?, ?it/s]"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from langchain.evaluation.loading import load_dataset\n",
 | |
|     "\n",
 | |
|     "dataset = load_dataset(\"sql-qa-chinook\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 8,
 | |
|    "id": "ab44d504",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "{'question': 'How many employees are there?', 'answer': '8'}"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 8,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "dataset[0]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "8a16b75d",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Setting up a chain\n",
 | |
|     "This uses the example Chinook database.\n",
 | |
|     "To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository.\n",
 | |
|     "\n",
 | |
|     "Note that here we load a simple chain. If you want to experiment with more complex chains, or an agent, just create the `chain` object in a different way."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "5b2d5e98",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "33cdcbfc",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
 | |
|     "llm = OpenAI(temperature=0)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "f0b5d8f6",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Now we can create a SQL database chain."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 14,
 | |
|    "id": "8843cb0c",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "chain = SQLDatabaseChain.from_llm(llm, db, input_key=\"question\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "6c0062e7",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Make a prediction\n",
 | |
|     "\n",
 | |
|     "First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 27,
 | |
|    "id": "d28c5e7d",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "{'question': 'How many employees are there?',\n",
 | |
|        " 'answer': '8',\n",
 | |
|        " 'result': ' There are 8 employees.'}"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 27,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "chain(dataset[0])"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "d0c16cd7",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Make many predictions\n",
 | |
|     "Now we can make predictions. Note that we add a try-except because this chain can sometimes error (if SQL is written incorrectly, etc)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 19,
 | |
|    "id": "24b4c66e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "predictions = []\n",
 | |
|     "predicted_dataset = []\n",
 | |
|     "error_dataset = []\n",
 | |
|     "for data in dataset:\n",
 | |
|     "    try:\n",
 | |
|     "        predictions.append(chain(data))\n",
 | |
|     "        predicted_dataset.append(data)\n",
 | |
|     "    except:\n",
 | |
|     "        error_dataset.append(data)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "4783344b",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Evaluate performance\n",
 | |
|     "Now we can evaluate the predictions. We can use a language model to score them programatically"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 21,
 | |
|    "id": "d0a9341d",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.evaluation.qa import QAEvalChain"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 22,
 | |
|    "id": "1612dec1",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "llm = OpenAI(temperature=0)\n",
 | |
|     "eval_chain = QAEvalChain.from_llm(llm)\n",
 | |
|     "graded_outputs = eval_chain.evaluate(\n",
 | |
|     "    predicted_dataset, predictions, question_key=\"question\", prediction_key=\"result\"\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "79587806",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "We can add in the graded output to the `predictions` dict and then get a count of the grades."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 23,
 | |
|    "id": "2a689df5",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "for i, prediction in enumerate(predictions):\n",
 | |
|     "    prediction[\"grade\"] = graded_outputs[i][\"text\"]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 24,
 | |
|    "id": "27b61215",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "Counter({' CORRECT': 3, ' INCORRECT': 4})"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 24,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from collections import Counter\n",
 | |
|     "\n",
 | |
|     "Counter([pred[\"grade\"] for pred in predictions])"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "12fe30f4",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "We can also filter the datapoints to the incorrect examples and look at them."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 25,
 | |
|    "id": "47c692a1",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "incorrect = [pred for pred in predictions if pred[\"grade\"] == \" INCORRECT\"]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 26,
 | |
|    "id": "0ef976c1",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "{'question': 'How many employees are also customers?',\n",
 | |
|        " 'answer': 'None',\n",
 | |
|        " 'result': ' 59 employees are also customers.',\n",
 | |
|        " 'grade': ' INCORRECT'}"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 26,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "incorrect[0]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "7710401a",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.11.3"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |