mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-29 23:00:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			181 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "bdccb278",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Grobid\n",
 | |
|     "\n",
 | |
|     "GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents.\n",
 | |
|     "\n",
 | |
|     "It is particularly good for sturctured PDFs, like academic papers.\n",
 | |
|     "\n",
 | |
|     "This loader uses GROBIB to parse PDFs into `Documents` that retain metadata associated with the section of text.\n",
 | |
|     "\n",
 | |
|     "---\n",
 | |
|     "\n",
 | |
|     "For users on `Mac` - \n",
 | |
|     "\n",
 | |
|     "(Note: additional instructions can be found [here](https://python.langchain.com/docs/ecosystem/integrations/grobid.mdx).)\n",
 | |
|     "\n",
 | |
|     "Install Java (Apple Silicon):\n",
 | |
|     "```\n",
 | |
|     "$ arch -arm64 brew install openjdk@11\n",
 | |
|     "$ brew --prefix openjdk@11\n",
 | |
|     "/opt/homebrew/opt/openjdk@ 11\n",
 | |
|     "```\n",
 | |
|     "\n",
 | |
|     "In `~/.zshrc`:\n",
 | |
|     "```\n",
 | |
|     "export JAVA_HOME=/opt/homebrew/opt/openjdk@11\n",
 | |
|     "export PATH=$JAVA_HOME/bin:$PATH\n",
 | |
|     "```\n",
 | |
|     "\n",
 | |
|     "Then, in Terminal:\n",
 | |
|     "```\n",
 | |
|     "$ source ~/.zshrc\n",
 | |
|     "```\n",
 | |
|     "\n",
 | |
|     "Confirm install:\n",
 | |
|     "```\n",
 | |
|     "$ which java\n",
 | |
|     "/opt/homebrew/opt/openjdk@11/bin/java\n",
 | |
|     "$ java -version \n",
 | |
|     "openjdk version \"11.0.19\" 2023-04-18\n",
 | |
|     "OpenJDK Runtime Environment Homebrew (build 11.0.19+0)\n",
 | |
|     "OpenJDK 64-Bit Server VM Homebrew (build 11.0.19+0, mixed mode)\n",
 | |
|     "```\n",
 | |
|     "\n",
 | |
|     "Then, get [Grobid](https://grobid.readthedocs.io/en/latest/Install-Grobid/#getting-grobid):\n",
 | |
|     "```\n",
 | |
|     "$ curl -LO https://github.com/kermitt2/grobid/archive/0.7.3.zip\n",
 | |
|     "$ unzip 0.7.3.zip\n",
 | |
|     "```\n",
 | |
|     "                   \n",
 | |
|     "Build\n",
 | |
|     "```\n",
 | |
|     "$ ./gradlew clean install\n",
 | |
|     "```\n",
 | |
|     "\n",
 | |
|     "Then, run the server:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "2d8992fc",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "! get_ipython().system_raw('nohup ./gradlew run > grobid.log 2>&1 &')"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "4b41bfb1",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Now, we can use the data loader."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "640e9a4b",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.document_loaders.parsers import GrobidParser\n",
 | |
|     "from langchain.document_loaders.generic import GenericLoader"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "ecdc1fb9",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "loader = GenericLoader.from_filesystem(\n",
 | |
|     "    \"../Papers/\",\n",
 | |
|     "    glob=\"*\",\n",
 | |
|     "    suffixes=[\".pdf\"],\n",
 | |
|     "    parser=GrobidParser(segment_sentences=False),\n",
 | |
|     ")\n",
 | |
|     "docs = loader.load()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "efe9e356",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 5,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "docs[3].page_content"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "5be03d17",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "{'text': 'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.',\n",
 | |
|        " 'para': '2',\n",
 | |
|        " 'bboxes': \"[[{'page': '1', 'x': '317.05', 'y': '509.17', 'h': '207.73', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '522.72', 'h': '220.08', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '536.27', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '549.82', 'h': '218.65', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '563.37', 'h': '136.98', 'w': '9.46'}], [{'page': '1', 'x': '446.49', 'y': '563.37', 'h': '78.11', 'w': '9.46'}, {'page': '1', 'x': '304.69', 'y': '576.92', 'h': '138.32', 'w': '9.46'}], [{'page': '1', 'x': '447.75', 'y': '576.92', 'h': '76.66', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '590.47', 'h': '219.63', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '604.02', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '617.56', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '631.11', 'h': '220.18', 'w': '9.46'}]]\",\n",
 | |
|        " 'pages': \"('1', '1')\",\n",
 | |
|        " 'section_title': 'Introduction',\n",
 | |
|        " 'section_number': '1',\n",
 | |
|        " 'paper_title': 'LLaMA: Open and Efficient Foundation Language Models',\n",
 | |
|        " 'file_path': '/Users/31treehaus/Desktop/Papers/2302.13971.pdf'}"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 6,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "docs[3].metadata"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.16"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |