mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	Various improvements to the Model I/O section of the documentation - Changed "Chat Model" to "chat model" in a few spots for internal consistency - Minor spelling & grammar fixes to improve readability & comprehension
		
			
				
	
	
		
			221 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Context\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "[Context](https://context.ai/) provides user analytics for LLM powered products and features.\n",
 | |
|     "\n",
 | |
|     "With Context, you can start understanding your users and improving their experiences in less than 30 minutes.\n",
 | |
|     "\n"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "In this guide we will show you how to integrate with Context."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "source": [
 | |
|     "## Installation and Setup"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {
 | |
|     "vscode": {
 | |
|      "languageId": "shellscript"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "$ pip install context-python --upgrade"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "### Getting API Credentials\n",
 | |
|     "\n",
 | |
|     "To get your Context API token:\n",
 | |
|     "\n",
 | |
|     "1. Go to the settings page within your Context account (https://with.context.ai/settings).\n",
 | |
|     "2. Generate a new API Token.\n",
 | |
|     "3. Store this token somewhere secure."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "### Setup Context\n",
 | |
|     "\n",
 | |
|     "To use the `ContextCallbackHandler`, import the handler from Langchain and instantiate it with your Context API token.\n",
 | |
|     "\n",
 | |
|     "Ensure you have installed the `context-python` package before using the handler."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "from langchain.callbacks import ContextCallbackHandler\n",
 | |
|     "\n",
 | |
|     "token = os.environ[\"CONTEXT_API_TOKEN\"]\n",
 | |
|     "\n",
 | |
|     "context_callback = ContextCallbackHandler(token)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Usage\n",
 | |
|     "### Using the Context callback within a chat model\n",
 | |
|     "\n",
 | |
|     "The Context callback handler can be used to directly record transcripts between users and AI assistants.\n",
 | |
|     "\n",
 | |
|     "#### Example"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "from langchain.chat_models import ChatOpenAI\n",
 | |
|     "from langchain.schema import (\n",
 | |
|     "    SystemMessage,\n",
 | |
|     "    HumanMessage,\n",
 | |
|     ")\n",
 | |
|     "from langchain.callbacks import ContextCallbackHandler\n",
 | |
|     "\n",
 | |
|     "token = os.environ[\"CONTEXT_API_TOKEN\"]\n",
 | |
|     "\n",
 | |
|     "chat = ChatOpenAI(\n",
 | |
|     "    headers={\"user_id\": \"123\"}, temperature=0, callbacks=[ContextCallbackHandler(token)]\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "messages = [\n",
 | |
|     "    SystemMessage(\n",
 | |
|     "        content=\"You are a helpful assistant that translates English to French.\"\n",
 | |
|     "    ),\n",
 | |
|     "    HumanMessage(content=\"I love programming.\"),\n",
 | |
|     "]\n",
 | |
|     "\n",
 | |
|     "print(chat(messages))"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "### Using the Context callback within Chains\n",
 | |
|     "\n",
 | |
|     "The Context callback handler can also be used to record the inputs and outputs of chains. Note that intermediate steps of the chain are not recorded - only the starting inputs and final outputs.\n",
 | |
|     "\n",
 | |
|     "__Note:__ Ensure that you pass the same context object to the chat model and the chain.\n",
 | |
|     "\n",
 | |
|     "Wrong:\n",
 | |
|     "> ```python\n",
 | |
|     "> chat = ChatOpenAI(temperature=0.9, callbacks=[ContextCallbackHandler(token)])\n",
 | |
|     "> chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[ContextCallbackHandler(token)])\n",
 | |
|     "> ```\n",
 | |
|     "\n",
 | |
|     "Correct:\n",
 | |
|     ">```python\n",
 | |
|     ">handler = ContextCallbackHandler(token)\n",
 | |
|     ">chat = ChatOpenAI(temperature=0.9, callbacks=[callback])\n",
 | |
|     ">chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[callback])\n",
 | |
|     ">```\n",
 | |
|     "\n",
 | |
|     "#### Example"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "from langchain.chat_models import ChatOpenAI\n",
 | |
|     "from langchain import LLMChain\n",
 | |
|     "from langchain.prompts import PromptTemplate\n",
 | |
|     "from langchain.prompts.chat import (\n",
 | |
|     "    ChatPromptTemplate,\n",
 | |
|     "    HumanMessagePromptTemplate,\n",
 | |
|     ")\n",
 | |
|     "from langchain.callbacks import ContextCallbackHandler\n",
 | |
|     "\n",
 | |
|     "token = os.environ[\"CONTEXT_API_TOKEN\"]\n",
 | |
|     "\n",
 | |
|     "human_message_prompt = HumanMessagePromptTemplate(\n",
 | |
|     "    prompt=PromptTemplate(\n",
 | |
|     "        template=\"What is a good name for a company that makes {product}?\",\n",
 | |
|     "        input_variables=[\"product\"],\n",
 | |
|     "    )\n",
 | |
|     ")\n",
 | |
|     "chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])\n",
 | |
|     "callback = ContextCallbackHandler(token)\n",
 | |
|     "chat = ChatOpenAI(temperature=0.9, callbacks=[callback])\n",
 | |
|     "chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[callback])\n",
 | |
|     "print(chain.run(\"colorful socks\"))"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   },
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "a53ebf4a859167383b364e7e7521d0add3c2dbbdecce4edf676e8c4634ff3fbb"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 4
 | |
| }
 |