mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			182 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "bf733a38-db84-4363-89e2-de6735c37230",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Anthropic\n",
 | |
|     "\n",
 | |
|     "This notebook covers how to get started with Anthropic chat models."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.chat_models import ChatAnthropic\n",
 | |
|     "from langchain.prompts.chat import (\n",
 | |
|     "    ChatPromptTemplate,\n",
 | |
|     "    SystemMessagePromptTemplate,\n",
 | |
|     "    AIMessagePromptTemplate,\n",
 | |
|     "    HumanMessagePromptTemplate,\n",
 | |
|     ")\n",
 | |
|     "from langchain.schema import AIMessage, HumanMessage, SystemMessage"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "chat = ChatAnthropic()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "AIMessage(content=\" J'aime la programmation.\", additional_kwargs={}, example=False)"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 3,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "messages = [\n",
 | |
|     "    HumanMessage(\n",
 | |
|     "        content=\"Translate this sentence from English to French. I love programming.\"\n",
 | |
|     "    )\n",
 | |
|     "]\n",
 | |
|     "chat(messages)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "c361ab1e-8c0c-4206-9e3c-9d1424a12b9c",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## `ChatAnthropic` also supports async and streaming functionality:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "93a21c5c-6ef9-4688-be60-b2e1f94842fb",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.callbacks.manager import CallbackManager\n",
 | |
|     "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "LLMResult(generations=[[ChatGeneration(text=\" J'aime programmer.\", generation_info=None, message=AIMessage(content=\" J'aime programmer.\", additional_kwargs={}, example=False))]], llm_output={}, run=[RunInfo(run_id=UUID('8cc8fb68-1c35-439c-96a0-695036a93652'))])"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 5,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "await chat.agenerate([messages])"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       " J'aime la programmation."
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "AIMessage(content=\" J'aime la programmation.\", additional_kwargs={}, example=False)"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 6,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "chat = ChatAnthropic(\n",
 | |
|     "    streaming=True,\n",
 | |
|     "    verbose=True,\n",
 | |
|     "    callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
 | |
|     ")\n",
 | |
|     "chat(messages)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "c253883f",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |