mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			178 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "id": "9597802c",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Anyscale\n",
 | |
|     "\n",
 | |
|     "[Anyscale](https://www.anyscale.com/) is a fully-managed [Ray](https://www.ray.io/) platform, on which you can build, deploy, and manage scalable AI and Python applications\n",
 | |
|     "\n",
 | |
|     "This example goes over how to use LangChain to interact with `Anyscale` [service](https://docs.anyscale.com/productionize/services-v2/get-started). \n",
 | |
|     "\n",
 | |
|     "It will send the requests to Anyscale Service endpoint, which is concatenate `ANYSCALE_SERVICE_URL` and `ANYSCALE_SERVICE_ROUTE`, with a token defined in `ANYSCALE_SERVICE_TOKEN`"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "os.environ[\"ANYSCALE_SERVICE_URL\"] = ANYSCALE_SERVICE_URL\n",
 | |
|     "os.environ[\"ANYSCALE_SERVICE_ROUTE\"] = ANYSCALE_SERVICE_ROUTE\n",
 | |
|     "os.environ[\"ANYSCALE_SERVICE_TOKEN\"] = ANYSCALE_SERVICE_TOKEN"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "6fb585dd",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.llms import Anyscale\n",
 | |
|     "from langchain import PromptTemplate, LLMChain"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "035dea0f",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "template = \"\"\"Question: {question}\n",
 | |
|     "\n",
 | |
|     "Answer: Let's think step by step.\"\"\"\n",
 | |
|     "\n",
 | |
|     "prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "3f3458d9",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "llm = Anyscale()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "a641dbd9",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "llm_chain = LLMChain(prompt=prompt, llm=llm)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "9f844993",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "question = \"When was George Washington president?\"\n",
 | |
|     "\n",
 | |
|     "llm_chain.run(question)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "id": "42f05b34-1a44-4cbd-8342-35c1572b6765",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "With Ray, we can distribute the queries without asyncrhonized implementation. This not only applies to Anyscale LLM model, but to any other Langchain LLM models which do not have `_acall` or `_agenerate` implemented"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "08b23adc-2b29-4c38-b538-47b3c3d840a6",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "prompt_list = [\n",
 | |
|     "    \"When was George Washington president?\",\n",
 | |
|     "    \"Explain to me the difference between nuclear fission and fusion.\",\n",
 | |
|     "    \"Give me a list of 5 science fiction books I should read next.\",\n",
 | |
|     "    \"Explain the difference between Spark and Ray.\",\n",
 | |
|     "    \"Suggest some fun holiday ideas.\",\n",
 | |
|     "    \"Tell a joke.\",\n",
 | |
|     "    \"What is 2+2?\",\n",
 | |
|     "    \"Explain what is machine learning like I am five years old.\",\n",
 | |
|     "    \"Explain what is artifical intelligence.\",\n",
 | |
|     "]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "2b45abb9-b764-497d-af99-0df1d4e335e0",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import ray\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "@ray.remote\n",
 | |
|     "def send_query(llm, prompt):\n",
 | |
|     "    resp = llm(prompt)\n",
 | |
|     "    return resp\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "futures = [send_query.remote(llm, prompt) for prompt in prompt_list]\n",
 | |
|     "results = ray.get(futures)"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.8"
 | |
|   },
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |