mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 10:10:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			214 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			214 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "fdd7864c-93e6-4eb4-a923-b80d2ae4377d",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# RELLM\n",
 | 
						|
    "\n",
 | 
						|
    "[RELLM](https://github.com/r2d4/rellm) is a library that wraps local Hugging Face pipeline models for structured decoding.\n",
 | 
						|
    "\n",
 | 
						|
    "It works by generating tokens one at a time. At each step, it masks tokens that don't conform to the provided partial regular expression.\n",
 | 
						|
    "\n",
 | 
						|
    "\n",
 | 
						|
    "**Warning - this module is still experimental**"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 1,
 | 
						|
   "id": "1617e327-d9a2-4ab6-aa9f-30a3167a3393",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "!pip install rellm > /dev/null"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "66bd89f1-8daa-433d-bb8f-5b0b3ae34b00",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "### Hugging Face Baseline\n",
 | 
						|
    "\n",
 | 
						|
    "First, let's establish a qualitative baseline by checking the output of the model without structured decoding."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 2,
 | 
						|
   "id": "d4d616ae-4d11-425f-b06c-c706d0386c68",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "import logging\n",
 | 
						|
    "\n",
 | 
						|
    "logging.basicConfig(level=logging.ERROR)\n",
 | 
						|
    "prompt = \"\"\"Human: \"What's the capital of the United States?\"\n",
 | 
						|
    "AI Assistant:{\n",
 | 
						|
    "  \"action\": \"Final Answer\",\n",
 | 
						|
    "  \"action_input\": \"The capital of the United States is Washington D.C.\"\n",
 | 
						|
    "}\n",
 | 
						|
    "Human: \"What's the capital of Pennsylvania?\"\n",
 | 
						|
    "AI Assistant:{\n",
 | 
						|
    "  \"action\": \"Final Answer\",\n",
 | 
						|
    "  \"action_input\": \"The capital of Pennsylvania is Harrisburg.\"\n",
 | 
						|
    "}\n",
 | 
						|
    "Human: \"What 2 + 5?\"\n",
 | 
						|
    "AI Assistant:{\n",
 | 
						|
    "  \"action\": \"Final Answer\",\n",
 | 
						|
    "  \"action_input\": \"2 + 5 = 7.\"\n",
 | 
						|
    "}\n",
 | 
						|
    "Human: 'What's the capital of Maryland?'\n",
 | 
						|
    "AI Assistant:\"\"\""
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 3,
 | 
						|
   "id": "9148e4b8-d370-4c05-a873-c121b65057b5",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stderr",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "generations=[[Generation(text=' \"What\\'s the capital of Maryland?\"\\n', generation_info=None)]] llm_output=None\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "from transformers import pipeline\n",
 | 
						|
    "from langchain.llms import HuggingFacePipeline\n",
 | 
						|
    "\n",
 | 
						|
    "hf_model = pipeline(\n",
 | 
						|
    "    \"text-generation\", model=\"cerebras/Cerebras-GPT-590M\", max_new_tokens=200\n",
 | 
						|
    ")\n",
 | 
						|
    "\n",
 | 
						|
    "original_model = HuggingFacePipeline(pipeline=hf_model)\n",
 | 
						|
    "\n",
 | 
						|
    "generated = original_model.generate([prompt], stop=[\"Human:\"])\n",
 | 
						|
    "print(generated)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "b6e7b9cf-8ce5-4f87-b4bf-100321ad2dd1",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "***That's not so impressive, is it? It didn't answer the question and it didn't follow the JSON format at all! Let's try with the structured decoder.***"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "96115154-a90a-46cb-9759-573860fc9b79",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## RELLM LLM Wrapper\n",
 | 
						|
    "\n",
 | 
						|
    "Let's try that again, now providing a regex to match the JSON structured format."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 4,
 | 
						|
   "id": "65c12e2a-bd7f-4cf0-8ef8-92cfa31c92ef",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "import regex  # Note this is the regex library NOT python's re stdlib module\n",
 | 
						|
    "\n",
 | 
						|
    "# We'll choose a regex that matches to a structured json string that looks like:\n",
 | 
						|
    "# {\n",
 | 
						|
    "#  \"action\": \"Final Answer\",\n",
 | 
						|
    "# \"action_input\": string or dict\n",
 | 
						|
    "# }\n",
 | 
						|
    "pattern = regex.compile(\n",
 | 
						|
    "    r'\\{\\s*\"action\":\\s*\"Final Answer\",\\s*\"action_input\":\\s*(\\{.*\\}|\"[^\"]*\")\\s*\\}\\nHuman:'\n",
 | 
						|
    ")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 5,
 | 
						|
   "id": "de85b1f8-b405-4291-b6d0-4b2c56e77ad6",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "{\"action\": \"Final Answer\",\n",
 | 
						|
      "  \"action_input\": \"The capital of Maryland is Baltimore.\"\n",
 | 
						|
      "}\n",
 | 
						|
      "\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "from langchain_experimental.llms import RELLM\n",
 | 
						|
    "\n",
 | 
						|
    "model = RELLM(pipeline=hf_model, regex=pattern, max_new_tokens=200)\n",
 | 
						|
    "\n",
 | 
						|
    "generated = model.predict(prompt, stop=[\"Human:\"])\n",
 | 
						|
    "print(generated)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "32077d74-0605-4138-9a10-0ce36637040d",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "source": [
 | 
						|
    "**Voila! Free of parsing errors.**"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "4bd208a1-779c-4c47-97d9-9115d15d441f",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.11.3"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |