mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	Updated `integrations/embeddings`: fixed titles; added links, descriptions Updated `integrations/providers`.
		
			
				
	
	
		
			112 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "b14a24db",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# AwaDB\n",
 | |
|     "\n",
 | |
|     ">[AwaDB](https://github.com/awa-ai/awadb) is an AI Native database for the search and storage of embedding vectors used by LLM Applications.\n",
 | |
|     "\n",
 | |
|     "This notebook explains how to use `AwaEmbeddings` in LangChain."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "0ab948fc",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# pip install awadb"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "67c637ca",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## import the library"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "5709b030",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.embeddings import AwaEmbeddings"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "1756b1ba",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "Embedding = AwaEmbeddings()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "4a2a098d",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Set embedding model\n",
 | |
|     "Users can use `Embedding.set_model()` to specify the embedding model. \\\n",
 | |
|     "The input of this function is a string which represents the model's name. \\\n",
 | |
|     "The list of currently supported models can be obtained [here](https://github.com/awa-ai/awadb) \\ \\ \n",
 | |
|     "\n",
 | |
|     "The **default model** is `all-mpnet-base-v2`, it can be used without setting."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "584b9af5",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "text = \"our embedding test\"\n",
 | |
|     "\n",
 | |
|     "Embedding.set_model(\"all-mpnet-base-v2\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "be18b873",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "res_query = Embedding.embed_query(\"The test information\")\n",
 | |
|     "res_document = Embedding.embed_documents([\"test1\", \"another test\"])"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.12"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |