mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	Updated `integrations/embeddings`: fixed titles; added links, descriptions Updated `integrations/providers`.
		
			
				
	
	
		
			100 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "719619d3",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# BGE on Hugging Face\n",
 | |
|     "\n",
 | |
|     ">[BGE models on the HuggingFace](https://huggingface.co/BAAI/bge-large-en) are [the best open-source embedding models](https://huggingface.co/spaces/mteb/leaderboard).\n",
 | |
|     ">BGE model is created by the [Beijing Academy of Artificial Intelligence (BAAI)](https://www.baai.ac.cn/english.html). `BAAI` is a private non-profit organization engaged in AI research and development.\n",
 | |
|     "\n",
 | |
|     "This notebook shows how to use `BGE Embeddings` through `Hugging Face`"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "f7a54279",
 | |
|    "metadata": {
 | |
|     "scrolled": true
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "#!pip install sentence_transformers"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "9e1d5b6b",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.embeddings import HuggingFaceBgeEmbeddings\n",
 | |
|     "\n",
 | |
|     "model_name = \"BAAI/bge-small-en\"\n",
 | |
|     "model_kwargs = {'device': 'cpu'}\n",
 | |
|     "encode_kwargs = {'normalize_embeddings': False}\n",
 | |
|     "hf = HuggingFaceBgeEmbeddings(\n",
 | |
|     "    model_name=model_name,\n",
 | |
|     "    model_kwargs=model_kwargs,\n",
 | |
|     "    encode_kwargs=encode_kwargs\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "e59d1a89",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "384"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 5,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "embedding = hf.embed_query(\"hi this is harrison\")\n",
 | |
|     "len(embedding)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "e596315f",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.12"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |